PIC-et Radio IV: How to Send PSK31 Data Using Inexpensive PIC Microcontrollers

Initial Draft

By John A. Hansen, W2FS

Author’s note:  This paper is the fourth in a continuing series of papers that explore the possibilities of using microcontrollers to implement digital communication technologies.  The first three papers in this series were originally presented at various TAPR/ARRL Digital Communication Conferences and can be found on the “documentation” page at www.tnc-x.com.  This paper describes an ongoing project and is subject to revision as that project is completed.

PSK31 is a wildly popular digital mode used on the HF bands mostly for keyboard to keyboard communication.  It was developed by Peter Martinez, G3PLX (see http://psk31.com/G3PLXarticle.pdf for details).  Software is available to operate this mode on most PCs using PC soundcards to do the digital to analog and analog to digital conversion.  The mode is a natural for low power transmitters because it is so efficient solid copy can be obtained with extremely weak signals.  Relatively simple (even indoor) antennas have also been used for reliable communication using this mode.  Given this, it would seem to be a great mode for QRP portable operation with, say, a Yaesu FT-817 or ICOM 703.  However, it does require a PC with a sound card and to date, there are no handheld PC options available that meet this requirement.  Thus it would seem that a laptop at least would be required.  However, It seems to me that lugging a laptop along could take a lot of the fun out of QRP portable operation.  
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Interestingly enough, the AOR TDF-370 (see picture) is capable of receiving PSK31, but for some reason they didn’t include the ability to transmit it.   This seemed rather odd to me since I’d thought that receiving the data would be the hard part, not transmitting it.  I think the TDF-370 may have severely limited its market by not including this feature.  To be honest, my longer-term goal in this project was to develop a terminal that would both send and receive PSK31, perhaps using an inexpensive Palm Pilot running a terminal program.  But I decided to start with the transmitting side since at least there was a non-laptop option for receiving already available.


PSK31 works by sending a single tone.  Data is indicated by either doing a phase shift of the tone by 180 degrees to indicate a digital zero or not doing this shift to indicate a digital one.  Martinez developed a “varicode” encoding scheme for text where each letter is represented by a string of ones and zeros that is between 1 and 10 bits long.  Shorter strings of bits are used to represent the more common characters.  The beginning of a transmission is indicated by a string of zeros and the conclusion is marked by a string of ones.  The bits are timed to be sent at a rate of 31.25 bits per second.  Peter says he picked this rate because it could easily be derived from the 8 kHz sample rate used in many DSP systems.  Since this was not going to be my approach to the problem, I had to determine a frequency to use that could be easily adapted to this bit rate.  I wanted the phase shift (if there was going to be one) to occur at the point where the audio sine wave crossed the zero point.  Thus, I wanted to pick a tone that would have a whole number of cycles in 31.25 seconds.  Thus, each bit period should be 1 / 31.25 = 32 ms. Now, if I selected a 375 Hz tone, each cycle of the tone would take  2 2/3 ms., so 12 cycles would take exactly 32 ms.  So if I transmit a 375 Hz tone and shift the phase of it (or not, depending on whether a zero or one is sent) every 12 cycles, I’ll be sending PSK31.  Similar calculations can show that if I transmit a 750 Hz signal and change the phase (or not) every 24 cycles, I’ll also be sending PSK31.  


The first step down this road was to get the PIC processor to send a sine wave.  Fortunately many people have been down this road before me.  Some have chosen to use the microcontroller’s Pulse Width Modulation (PWM) capabilities to do this.  In the case of the PIC that I’m using, this would only allow me to obtain 32 different voltage levels over the course of an audio sine wave.  While this is certainly adequate for 1200 baud packet, I decided to start with something that would at least allow the possibility of producing a better approximation of a sine wave.  I did this because the usual mechanism for sending PSK31, a PC sound card, is capable of achieving a much better approximation than this.  A packet signal only requires that the receiver discern whether the audio frequency is 1200 or 2200 Hz.  PSK31 has to detect the phase at specific points in time and, knowing relatively little at this point about how PSK31 was decoded, this seemed to me to be a more difficult task than determining the frequency.  Of course, I could be wrong about this, and I intend to do some more experimentation to how robust a system is needed.
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A second approach for generating a sine wave is to use a “resistor ladder.”  Byon Garrabrant, N6BG uses this approach, for example, in the Tiny Trak.  Within this general approach, there are two possibilities.  Byon uses 4 PIC pins and connects resistors to them such that they have values that double when moving from pin to pin.  Thus he connects a 1K resistor to the first pin, a 2k resistor to the next, and so on.  The idea is that turning on different combinations of pins will result in 16 different voltage levels.  As I noted above, I was concerned that this would not provide me with enough different voltage levels to give a sufficiently close approximation to a sine wave for PSK31.  So, using this approach I would need more pins.  It gets hard to find the appropriate resistor values to keep doubling for more and more pins, so I used a second approach that was outlined in a Microchip Application Note (AN-655 available on www.microchip.com). This approach uses twice as many resistors (2 for each pin) but only two different values are needed altogether.  These values are readily available in 16 pin DIP packages, so if I ever decided to do a commercial design based on this, I could simply use two of these DIPs (one for each value).


I decided to use 7 PIC pins, which would produce 128 different possible voltage levels.  I settled on 7 because I wanted to use a relatively small, inexpensive PIC (one of the 18 pin models).  Eight of the pins on this chip constitute something called “Port B”.  You can set the state of all 8 pins at one time because a single register in the chip controls them all.  Thus, only one clock cycle is required to set all the pins.  However one of those pins is connected internally to the receiver on the chip’s serial port.  I wanted to use the hardware serial port in the chip to receive data from the Palm Pilot (or other terminal) so that pin would not be available for the resistor ladder.  This left me with 7 pins.  


The next step was to figure out how many points along the sine wave that I wanted to set for a single cycle.  I suppose the absolute minimum would be four, marking the top of the cycle, the bottom and the points where the cycle crossed zero.  This way one could in theory figure out where the zero crossing was and determine whether the cycle continued on in the same direction (indicating a one bit) or reversed direction and headed back toward the top or bottom (indicating a zero bit).   However, since I really didn’t know exactly how PSK receive systems worked, I was almost certain that this wouldn’t be enough data.  I arbitrarily picked a value 64 for the number of points that I would use to specify the proper voltage level.  


The next step was to figure which pins to turn on at each of the 64 points on the cycle.  To do this, you first divide the sine wave into 64 parts and then calculate the sine for each of those points.  Remembering my high school mathematics, it is a lot easier to do this using radians than it is using angle degrees.  An entire sine wave is 2( in length so each 64th part is (/32.  So, to start, one calculates the sine of each of the following values:  0, (/32, 2(/32, 3(/32 and so forth up to 63(/32.  Using either a calculator, a sine table or your trusty slide rule, this will give you a sine value that ranges for –1 (at 48(/32) to 1 (at 16(/32).  The voltage produced by the PIC and resistor ladder will not range from –1 to 1 however, so it is necessary to rescale these values so that the peak corresponds to the highest voltage you can get out the ladder (where all 7 pins are turned on) and the bottom corresponds to the lowest voltage you can get out of the PIC (where all 7 pins are turned off).  Then it is necessary to figure out the pin configuration that will produce a value very close to the value on the re-scaled sine wave.  With 128 different voltage possibilities it is possible to get pretty close! Of course there is a DC bias to this signal because the PIC pins cannot produce negative voltages, but this can be removed by running the output signal through a capacitor.   I took a look at the resulting waveform with my oscilloscope and it looked as follows:
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Clearly we’ve got a pretty good approximation of a 750 Hz sine wave here.  In terms of the programming code, I created an array (called wave) of the values that needed to be written to the Port B pins in order go from the top of the sine wave to the bottom.  It would have been redundant to also include the values that were necessary to go from the bottom back to the top, since these values were identical to the first set.  What I needed to do was simply to step through the array from start to finish.  When I reached the end, I then stepped through the array backwards to form the other half of the wave.  I used a variable called point to keep track of where I was in this process.  Since the peak and bottom values are both included in this array, it has (64/2) + 1 = 33 values.  The code to accomplish this is pretty simple:


PORTB = wave[point];


if (point == 32) up = true;


if (point == 0) up = false;


if (up) point--;



else point++;

A variable called ‘up’ keeps track of whether we are moving up the sine wave or down.  The first line of code sets the voltage on the output.  If we’ve reached the last point of the array, it means we’ve reached the bottom point on the sine wave.  So ‘up’ is set to true.  If we have reached the first element of the array, it means we must have reached the peak of the sine wave, so ‘up’ is set to false.  When up is false we move forward through the array; when ‘up’ is false, we move backward.

The only thing lacking here is the timing mechanism. If we ran the above routine without any delay, it would produce a frequency much higher than the desired 750Hz.  So this code was placed in an interrupt service routine.  I arranged for the PIC to fire an interrupt in such a way that the resulting wave was 750 Hz.

But that doesn’t send any data, it’s just a sine wave.  In order to send a string of zeros it is necessary to change the phase of this signal by 180 degrees every 24 cycles.  Such a signal would look like this on an oscilloscope:
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Note that this type of phase shift can be accomplished by simply reversing the direction of the movement through the data array at the halfway point.  The modified interrupt service routine that does this looks something like this:


portb= wave[point];


if (point == 32) up = true;


if (point == 0) up = false;


if (point==16){



cycle++;



if (cycle == 48) {






if (flip)  up = !up;




cycle = 0;



}



flip = true;




}


if (up) point--;



else point++;


The variable ‘cycle’ counts the number of zero crossings that have occurred since the last phase change was made.  A zero crossing occurs half way through the array, at data point 16.  Since there are two zero crossing per sine wave cycle, we need to get 48 of them in order to complete 24 sine wave cycles (for a data rate of 31.25 bits per second).  A variable called ‘flip’ determines whether the phase shift should be made or not.  If a phase change is to be made, flipping the ‘up’ variable causes the direction through the array to be reversed.  At that point the cycle count is also reset to zero.  I’ve designed this program so that the default data bit sent will be a zero, so each time through zero crossing routine the ‘flip’ variable is set to true.  If the program needs to send a one instead, it simply changes the value of this variable to false and the next time ‘cycle’ equals 48 no phase change will be accomplished.   The nice thing about doing it this way is that the main program itself can have virtually no code in it all and the unit will idle by sending a series of zeros.  

Here is a spectrogram (made with the Zakanaka PSK31 program) of the resulting signal when the unit idles by sending zeros.  Note that the IMD figure on the display is –9dB.  [image: image5.png]


This is pretty bad and indicates that some additional work is needed.  It is recommended that transmitter produce IMD values of at least –23 dB.  However, the current program is a first hack only.  When I changed the timing so that a 775 Hz wave was produced, for example, the IMD rose to almost -23 dB.  However, this fouls up the bit rate (it’s no longer 31.25 bits/sec) and so copy of the data became pretty spotty.  I’m hoping that some tweaking of the sine wave will resolve this issue.  It’s worth noting, however, that despite the poor IMD figure, the receiver is able to perfectly copy this signal, even at very low signal levels.


In order to actually send data it is necessary to have the PIC receive data over the serial port and encode the data in the phase shifts of the sine wave.  To hold the data that needs to be sent I created another array that has room for 80 bytes (called ‘text[]’).  PSK31 is mostly used for keyboard to keyboard QSO’s.  As a result, large amounts of data do not generally need to be held in memory waiting to be transmitted.   I could have allowed a buffer larger than 80 characters, but to do that I would have had to either select a much larger PIC or add a memory chip (the latter was the approach I took with the TNC-X project).  Currently, I am using a PIC16F628A chip for this project.  It’s extremely cheap (under $2) and it has a built in hardware serial port. 

The data buffer is configured as circular buffer so when the end of the buffer is reached it wraps around to the beginning.   Two variables are used as pointers that indicate the next place in the buffer that data should be added and the next place in the buffer that data should be removed for transmission.  A third variable keeps track of the number of bytes awaiting transmission.  This variable is not strictly necessary, but it makes the program simpler.  In the mainline of my program every now and then I call a routine that checks to see if there is a byte of data on the serial port waiting to be received and if there is, it moves it to the next location in the buffer.  The code that does this is relatively simple:


    if (bit_test(PIR1,5)){  



                




text[receivepoint] = getc();  




receivepoint++;



bytes++;



if (receivepoint == 80) receivepoint = 0;


   } 

Bit 5 of the PIR1 register (PIR1,5) is true if there is a byte to be processed.  If so, it is placed in the text array at the receivepoint, the receivepoint is incremented, and the number of bytes received (‘bytes’) is incremented.  The last line wraps the end of the buffer around to the beginning.  

When there is data to send (byte>0), the character must be translated into the Martinez varicode system and then clocked out on the sine wave.  A lookup table handles the translation to varicode.  Two bytes are used to return the varicode value because it is 10 bits wide.  Martinez designed the varicode so that two zeros in a row never occur within a character itself, but two consecutive zeros mark the end of each character.  This solves the problem of not knowing how many bits should be transmitted (since the length of the varicode can range from 1 to 10 bits).  The program simply keeps transmitting bits until it runs into two zeros in a row.  Then it knows that the end of the varicode character has been reached.  The code to do this looks like this:

if (bytes > 0){


current = translate(text[sendpoint]);   


while ((current & 1) || (lastbit)){



lastbit = (current & 1);



while (cycle != 47); 



if (lastbit) flip = false;



current = current >> 1;  



while(cycle !=0);


}//end of while


while(cycle != 47);  


while(cycle != 0);


sendpoint++;


if (sendpoint == 80) sendpoint = 0;  //don't overrun the array


bytes--;

}

The variable ‘sendpoint’ contains the index in the text array that contains the byte to be sent.  The variable ‘current’ holds the varicode value of this byte, which is produced by the translate function.  ‘Lastbit’ contains the bit that was previously sent.  This allows the program to determine when two zeros in a row have been sent.  The loop that begins with the line “while ((current & 1) || (lastbit)){“  allows the program to continue to process the bits until two zeros in a row are located.  The phase shift is supposed to occur, if needed, on the 48th zero crossing, so we pause the program until we get to the 47th zero crossing.  Obviously we don’t want to move on to process the next bit until the current one has been sent!  If the bit to be sent is a 1, then the phase shift does not occur (flip = false), otherwise it is left at the default value of true.  

When I constructed the varicode lookup table, I reversed the order of the bits so that the first bit to be sent was the rightmost bit.  This allows me to simply right shift the value of ‘current’ to get to the next bit.  It is necessary to wait until the last bit has been sent (cycle = 0) before moving on to process the next bit.  PSK31 specifies that a pair of zeros should be sent in between each character.  One of these is sent by the loop that sends the bits themselves, but the second zero is sent by the pair of while statements after the loop.  After the character and two zeros have been sent, ‘sendpoint’ is incremented to move it to the next character that is due to be sent and if necessary this value wraps around to the beginning of the array.  Finally, since a byte has been sent, we decrement the value of ‘byte’.

So far, so good.  The transmitter produces output that is perfectly readable when routed into my PC soundcard and decoded by Zakanaka.  The only remaining problem is the IMD figure, which clearly needs work.  It may be that sine wave needs some massaging, or it may be that I need more than 64 data points or 128 different voltage levels to produce an adequate signal.  But I think that this initial experiment shows that transmitting PSK31 will be possible with an extremely inexpensive PIC based system.
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