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6 Rules for Filter Response

The channel response must be symmetrical around 1/2 the data
rate (Nyquist’s second theorem, the vestigial symmetry theorem).

The response should have linear phase.

The response should cross through the 1/2 amplitude point at
one-half the data rate, in baud (Nyquist’s first theorem, the
minimum bandwidth theorem).

The spectral shape of the source must be compensated.
Generally, we must multiply a square-wave by x/sin(x).

The filter transition from passband to stopband should be gentle,
not abrupt.

OPTIONAL:

To minimize zero-crossing jitter, the impulse response should
cross 1/2 amplitude at the one-half bit time.
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Amplitude, linear scale
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Response Partitioning

Response needs to be well controlled for good
performance.

This is difficult to achieve in the radio - the
modem usually contains the precision filters.

Thus the radio response should be flat in
amplitude, and linear in phase

Linear phase means flat group delay



Amplitude and Phase of Responses

All possible responses can be described as a
transfer function using complex numbers

The response consists of Poles and Zeros

Knowing the poles and zeros gives complete
knowledge of amplitude, phase and group delay

These can be individually compensated.
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Amplitude, dB.

High-pass filter, normalized to 1 radian/second
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Group Delay

Group delay is the rate of phase-change versus frequency

ﬂ this is the negative of the 'slope’ of the phase
d freq versus frequency (negative of the derivative)

Converting units to seconds :

d phiisinradians, d freqis in radians/second. So the units are seconds
Radians = Degrees *PI/ 180

Radians / second = (Cycles / second) * 2 * PI

So, seconds = (degrees *PI/180) / (cycles/sec *2* Pl) = degrees/hertz * 1/360



Group delay, seconds

Phase and Group Delay of Low-pass & high-pass filters
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group delay, seconds

Phase and group delay of equalizer
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group delay, seconds

Phase and group delay of equalizer
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Amplitude, db., and Phase, degrees
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Amplitude, dB.
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Amplitude, dB.
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Amplitude, dB.
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Discriminator amplitude, volts

4.2

3.8

3.6

3.4

3.2

GE Master Exec

]Discriminator Voltage |Sensitivity]
J\’ N
N \
N
\ X
\\_;/__/
-20 -15 -10 -5 0 5 10 15 20

Channel Frequency - Center Frequency

1000000

100000

10000

1000

100

10

Sensitivity, microvolts



Delay, microseconds
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Discriminator amplitude, volts
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Delay, microseconds
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