Chapter 9

Figure 9-9 (continued)

```
; The TX subroutine sends out the byte passed to it in W.
; It returns with Z=1 if ACK occurs. ; It returns with Z=0 if NOACK occurs
        movwf
                 TXBUFF
                                   ; Save parameter in TXBUFF
                 STATUS, C
                                   ;Rotate a one through TXBUFF to count bits
        bsf
TX_1
        rlf
                 TXBUFF, F
                                   ;Rotate TXBUFF left, through Carry
        movf
                 TXBUFF, F
                                   ;Set Z bit when all eight bits have been transferred
        btfss
                 STATUS, Z
                                   :Until Z=1
                                   ; send Carry bit, then clear Carry bit
        call
                 BitOut
        btfss
                 STATUS, Z
        goto
                 TX_1
                                       then do it again
        call
                                   :Read acknowledge bit into bit 0 of RXBUFF
        movlw
                 B.0000001.
                                   ;Check acknowledge bit
        andwf
                 RXBUFF, W
                                   ; Z=1 if ACK; Z=0 if NOACK
        return
; The RX subroutine receives a byte from the I2C bus into W, using RXBUFF buffer
 Call RX with bit 7 of TXBUFF clear for ACK.
; Call RX with bit 7 of TXBUFF set for NOACK.
RX
                 B'00000001
        movlw
                                   ;Rotate a one through RXBUFF to the carry bit to count bits
                 RXBUFF
        movwf
RX 1
        rlf
                 RXBUFF.F
                                   ;Shift previous bits left
                                   ;Read a bit from SDA into bit 0 of RXBUFF
                 BitIn
        call
                 STATUS, C
        btfss
                                   ;C=1 yet;
        goto
                                   ;No, do it again
                 TXBUFF, F
        rlf
                                   ;Move bit 7 of TXBUFF to Carry bit
                                   ;and from there to SDA as acknowledgment;Put received byte into W
        call
                 BitOut
                 RXBUFF, W
        movf
        return
; The BitOut subroutine transmits, then clears, the Carry bit
BitOut
        bcf
                 INDF, SDA
                                   ;Copy Carry bit to SDA
                 STATUS, C
        btfsc
        bsf
                 INDF, SDA
        hef
                 INDF, SCL
                                   ; Pulse clock line
                                   ;t:HIGH
        delay
                 0.1.2
                 INDF, SCL
        bcf
        bcf
                 STATUS, C
                                   ;Clear Carry bit
; The BitIn subroutine receives one bit into bit 0 of RXBUFF
BitIn
                 INDF, SDA
                                   ;Release SDA line
        bsf
        bsf
                 INDF, SCL
                                   ;Drive clock line high
        bcf
                 RXBUFF, 0
                                   ;Copy SDA to bit 0 of RXBUFF
                 PORTC, SDA
        btfsc
                 RXBUFF, 0
        þsf
        bcf
                                   ;Drive clock line low again
        return
```

9.5 TEMPERATURE SENSOR

The combination of an analog temperature transducer, an analog-to-digital converter, and an I^2C bus interface all in a tiny SO-8 surface-mount package represents a significant contribution to designers.

PIC RC4/SDI/SDA RC3/SCK/SCL

F

ſ

Figure 9-10 DAC or

The analog voltage from physical proximity that ε inside the chip, once and National Semicondu with ±2°C accuracy. The

with ±2°C accuracy. The to +125°C. For many a obtained with the support output. This 0.5°C resolution is the support output.