Channel Capacity

Tom McDermott, N5EG June 1997

Why Spread Spectrum?

- Data transmission can occur with or without SS modulation why use it?
 - SS can be more resistant to multipath
 - S can be more resistant to Narrow-band interference
 - S can promote efficient channel utilization

Channel Utilization

- How do mulitple users access a common resource (such as a channel)?
 - Example: FM Repeater or Digipeater
 - Use one at a time, each waits until the repeater is free, then there is a 'free for all'
 - If there are too many users, then put up another repeater.
 - All channels are occupied whether or not they are used: Idle repeater channels cannot be used for other traffic.
 - If most channels are mostly idle, then utilization efficiency is very poor.

Other types of contention

- Dynamic assignment of channels: trunking radio system
 - Each user 'requests' a channel. When it becomes available, the user is assigned to the channel, it is marked busy.
 - Each channel requires a reservation of a frequency slot so that slot is avaliable when needed.
 - Idle slots cannot be used for other traffic.
 - If most slots are mostly idle, then utilization efficiency is poor.

Orthogonal coding

- Each slot occupies many of the channels.
 - Each user 'requests' a slot. When it becomes available, the user is assigned a code, it is marked busy.
 - Many orthogonal codes exist, they do not consume bandwidth when unused.
 - Idle codes can be used for other traffic.
 - If a user 'owns' a code, but is not transmitting, they consume no channel power.
 - If most slots are mostly idle, then very little average energy is consumed across the spectrum.

Sharing

- Orthogonal codes (or, alternatively other FH sequences) could be used to provide multiple functions.
 - Each sequence needs power in proportion to it's data rate .. half the data rate means half the power is needed for same bit error rate.
 - If too many users need simultaneous access to the spectrum, then too much energy fills available spectrum and all users suffer bit errors.
 - Three strategies:
 - Assign codes based on peak usage.
 - Assign codes based on average usage.
 - Limit maximum codes, *delay* users beyond some capacity number.

Peak use / Average use

- If there are many users, then statistically the channel power consumption tends towards the average.
 - The more users, the higher the probability this is true. (Gaussian distribution).
- In addition, users requesting channels arrive at an average rate, with some variation in when they arrive.
 - The more users, the higher the probability that they arrive near the average rate (Poisson distribution).
- These two factors can lead to efficient utilization of channel capacity.

Channel Power Consumption

User arrival rate

Delaying Users

- In order to minimize peak consumption, *delay* users until a channel becomes available.
 - Problem is well-studied in Telephone industry.
 - If we delay a user, then the Poisson distribution holds. Tables for Erlangs capacity vs. blocking probability and number of trunks are readily available.
 - 1 Erlang of traffic = one trunk completely busy all the time.
 - Translate: 1 trunk = 1 code

Erlangs to Users

- If each user holds for 6 minutes, and calls once per hour, they consume 6/60 = 0.1 Erlangs of capacity.
- Mapping this to data usage is tricky, since data usage statistics don't follow telephone usage statistics too well.
- Factor this with the User's power density. If they only have data to send 10% of the time, then they use 0.1 * 0.1 = .01 Erlangs.
- A few trunks handle a lot of users...most of the time.

Trunk Loading Capacity

	Grade of Service		
Trunks	P=.001	P=.01	P=.1
1	0.003	0.011	0.106
2	0.044	0.15	0.531
3	0.192	0.436	1.1
4	0.428	0.822	1.75
5	0.739	1.281	2.444
6	1.11	1.79	3.14
7	1.52	2.33	3.89
8	1.97	2.91	4.67
9	2.45	3.5	5.42
10	2.97	4.14	6.22
11	3.5	4.78	7.03
12	4.03	5.42	7.83
13	4.61	6.11	8.64
14	5.19	6.78	9.47
15	5.78	7.47	10.28

Capacity in Erlangs

Source: Reference Manual for Telecommunications Engineering

Conclusion

- Trunking system dramatically improves channel utilization and grade of service.
- Spread Spectrum system improves upon trunking capacity by factor of average user channel density.
- SS provides significantly more data capacity with higher grade-of-service than traditional channelized techniques employing noncoordinated point-to-point links.
 - Example: PCS cellular system

Example

Collecting idle time among trunks (all in a group) vs. same number of independent trunks:

Blocking	1 Trunk	10 Indepen-	10 Grouped
Probability		dent trunks	trunks
P=0.01	0.011 Erlangs	0.11 Erlangs	4.14 Erlangs
@ 6 mins/hr	0.11 Users	1.1 Users	41.4 Users
P=0.05	0.053 Erlangs	0.53 Erlangs	5.42 Erlangs
@ 6 mins/hr	0.53 Users	5.3 Users	54.2 Users

Between 10x and 40x improvement in Capacity