
77

Improved Layer 2 Protocol 
Nino Carrillo KK4HEJ 

IL2P Overview 
IL2P is a Layer 2 packet format that incorporates Forward Error Correction (FEC), packet-synchronous 
scrambling, and efficient encoding of variable-length packets for narrow-band digital data links. IL2P 
builds on the extensive work done by others in the amateur radio field to improve the quality, speed, 
and flexibility of packet radio data networks. IL2P is inspired and informed by the FX.25 draft standard, 
but departs from on-air backwards compatibility with AX.25 in order to implement a more capable 
standard. Several of the IL2P Design Goals stem directly from recommendations made by the authors 
of FX.25 in their draft specification document. 
 
Initial implementations of IL2P target compatibility with the standard AX.25 KISS interface to transfer 
data to and from a local host device. Many popular host applications (like linBPQ and APRS servers) 
expect TNCs to speak AX.25 KISS. Therefore, the first hardware implementation of IL2P in existence 
translates AX.25 KISS frames into IL2P for broadcast on-air, and converts them back to AX.25 KISS 
frames at the receive side to send them to the host. 
 
Cost of custom-made printed circuit boards and fast embedded digital signal processors are 
significantly lower today than in 2006, when the FX.25 draft standard was published. It now is possible 
to implement a KISS TNC in low-power embedded firmware that can encode and decode IL2P packets 
in real time, while listening for legacy AX.25 packets, and performing 1200 baud AFSK or 9600 baud 
GFSK modulation and demodulation on a datastream. It is the author’s hope that these hybrid firmware 
TNCs, which can offer legacy AX.25 compatibility in parallel with IL2P capabilities at lower cost than 
traditional hardware TNCs, accelerate the adoption of this improved standard. 

Design Goals 
Incorporate forward-error-correction 
Eliminate bit-stuffing  
Streamline the AX.25 header format 
Improve packet detection in absence of DCD and for open-squelch receive 
Produce a bitstream suitable for modulation on various physical layers 
Avoid bit-error-amplifying methods (differential encoding and free-running LFSRs) 
Increase efficiency and simplicity over FX.25 

Interface to Physical Layer 
IL2P can be applied to various modulation methods including Audio Frequency Shift Keying (AFSK), 
Gaussian Frequency Shift Keying (GFSK), and any others that support binary symbols. A '1' bit in IL2P 
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is sent as an AFSK "mark" tone (1200 Hz), while a '0' bit is sent as an AFSK "space" tone (2200Hz). 
When using 9600 GFSK, a '1' bit is sent as positive FM carrier deviation (appears as a positive voltage 
pulse on the TNC’s TXA line), and a '0' bit is sent as negative FM carrier deviation. Unlike Bell 202 
Non-Return-to-Zero Inverted (NRZI) AFSK and G3RUH 9600, IL2P does not use differential encoding. 

Technical Details

Reed Solomon Forward Error Correction 
Reed-Solomon (RS) forward-error-correction is used to detect and correct errors in the header and 
payload blocks. The IL2P RS encoder processes header and payload data after it has been scrambled, 
to eliminate the error-amplifying characteristics of multiplicative LFSRs. RS codes have maximum block 
lengths defined by their underlying Galois Field (GF) size. IL2P uses an 8-bit field to match the size of a 
byte. The Galois Field is defined by reducing polynomial x^8+x^4+x^3+x^2+1. The maximum RS block 
size is 255 bytes, including parity. In order to support packets larger than the RS block size, large 
packets are segmented by the encoder into nearly-equal sized blocks before RS encoding into a 
contiguous IL2P packet.  

Variable parity lengths of 2, 4, 6, 8, or 16 symbols (bytes) are used depending on the size of the 
payload block and selected FEC strength. This allows for increased efficiency for short packets, and 
provides a consistent symbol-error capability independent of packet length. Variable code shortening is 
used to eliminate block padding, enabled by a payload byte count subfield in the header.  

The RS encoder uses zero as its first root. 

IL2P does not use a Cyclic Redundancy Check (CRC) or Frame Check Sequence (FCS). Instead, 
validity of received data is verified through successful decoding of the RS blocks. 

Data Scrambling
IL2P employs packet-synchronous multiplicative scrambling to reduce transmit signal occupied 
bandwidth, ensure sufficient zero crossings for the receive data-clock PLL, and DC-balance the 
transmit bitstream. The scrambling is carried out by a linear-feedback-shift-register (LFSR), using 
feedback polynomial x^9+x^4+1, which is maximal. This polynomial is significantly lower-order than that 
used in G3RUH 9600 modems. Selection of a lower order ensures the longest runs of continuous 1 or 0
bits will be shorter, which aids receive data-clock stability.  

Packet-Synchronized LFSR
The LFSR is reset to initial conditions at the start of every packet. Scrambling begins at the first bit after 
the Sync Word. The Preamble and Sync Word are not scrambled. During receive, prior to Sync Word 
detection, the LFSR is not engaged. The LFSR state is unaltered between blocks inside a packet, 
scrambling or unscrambling continues with the state left at the end of the last block. 
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Scrambling Inside RS Code Block 
IL2P LFSR encoding is applied inside the RS code block to eliminate the bit-error-amplifying 
characteristics of LFSR processing. A free-running LFSR (such as in the receive circuitry of the G3RUH 
modem) propagates bit errors at a multiple of the number of feedback polynomial coefficients (or taps 
on the LFSR). For example, when a single bit-error passes through a free-running LFSR defined by 
X^9+X^4+1 (or any other 3-term polynomial), 3 erroneous bits will appear on the output as they are 
XOR’d through the feedback taps of the shift register. This is of little concern in legacy AX.25 on-air 
protocols, because even a single bit error anywhere in the packet will cause the packet to be rejected.  

RS codes correct errors on a symbol-by-symbol basis (byte-by-byte for IL2P). In order to prevent the 
LFSR spreading a single bit error from one RS symbol to another, the IL2P packet encoder applies RS 
encoding after the data has been scrambled, and the receiver applies RS decoding before the data is 
unscrambled. This allows bit errors to be corrected by the RS decoder before passing through the 
receive LFSR. The RS parity symbols themselves are not passed through an LFSR, they are appended 
to the RS block exactly as computed. 

Extracting All Data from LFSR Memory 
Efficient LFSR algorithms can be constructed by arranging an LFSR in Galois configuration. Galois 
configured LFSRs have bit delay, which means it takes some number of bit cycles after a bit of 
information enters the LFSR for it to appear in its scrambled form on the output. Because of this, the 
output of the LFSR is taken after its bit delay has elapsed (5 bits in this case), and flushed at the end of 
the data block to extract all information bits from its memory. The LFSR schematics given below 
represent Galois configuration of the IL2P scrambling polynomial. 

Transmit LFSR Schematic and Initial Conditions 

 

Receive LFSR Schematic and Initial Conditions 
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Packet Structure
IL2P Packet Format 

Preamble Sync Word
Control & 

Addressing 
 Header Parity

Payload 
Blocks &

Parity 

variable 3 bytes 13 bytes 2 bytes 0-1081 bytes 

All bytes are sent Most Significant Bit first. 

Preamble 
The IL2P recommended Preamble is variable length, and consists of some number of 0x55 bytes 
(01010101), which provides the receive data slicer frequent bit transitions to establish a lock on the 
transmitted data-clock before information appears. When sent back-to-back, the Preamble of 
subsequent packets is omitted. There is no terminating symbol. All IL2P packets are terminated by byte 
count, which is stored in the header. 

Sync Word
The IL2P Sync Word is 0xF15E48. This 24 bit sequence has an equal number of 1's and 0's and 
identifies the start of all IL2P Packets. Recommended Sync Word match tolerance at the receiver is 1 
bit, meaning the receiver will declare a match if 23 out of the last 24 bits received match the Sync Word 
(any single bit flipped). This intended to ensure Sync Word detection on noisy links, at the cost of 
increasing the Sync Word match space up to 25 possible matches out of 2^24 possible bit sequences. 
In a 9600 bit/sec application with open squelch and ignoring DCD, the expected average interval time 
between false matches is about 69 seconds (bit rate * 2^24 / 25). False matches are rejected by the 
receiver after the header fails RS decoding.  

FEC Level 
A one-bit subfield in the header identifies the amount of FEC parity bytes applied to the packet. A zero
value indicates variable FEC up to 8 bytes per block (referred to Baseline FEC in this document). A one
value indicates constant FEC of 16 bytes per block (referred to as Max FEC).

IL2P Header Types 
IL2P defines 2 possible header mappings, encoded in a 1-bit header subfield. A zero value indicates 
transparent encapsulation. A one value indicates translated encapsulation. Both mappings include a 
10-bit payload count, enabling packet sizes up to 1023 payload bytes after the header. This count does 
not include parity bytes attached to the payload. 
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IL2P Type 0 Header 
Type 0 headers are used for transparent encapsulation of data - the entire encapsulated packet 
appears in the payload of the IL2P packet. Therefore, the header only includes the 10 bit PAYLOAD 
BYTE COUNT subfield as described in IL2P Type 1 Header. Type 0 encapsulation occurs when a KISS 
frame is presented to the IL2P encoder that cannot be translated. Some examples of non-translatable 
KISS frames include MIC-E encoded APRS data (callsign characters can’t translate to SIXBIT), 
Extended mode AX.25 frames (modulo-127 window sizes), and unrecognized AX.25 PID codes. These 
frames are placed entirely in the IL2P payload, so they still benefit from forward-error-correction. 

IL2P Type 1 Header 
Type 1 headers contain a compressed and translated AX.25 header. The majority of common AX.25 
traffic is compatible with Type 1 translation. The Control and Addressing section of the header contains 
everything normally found in an AX.25 header, with some modifications. IL2P stores destination and 
source callsigns using six bits per character in DEC SIXBIT coding (take the ASCII code for a printable 
character and subtract 0x20). IL2P also compresses the Protocol ID field to 4 bits rather than 8.  
 

Control and Addressing Field Map for IL2P Type 1 Header 

 Byte 
0 

Byte 
1 

Byte 
2 

Byte 
3 

Byte 
4 

Byte 
5 

Byte 
6 

Byte 
7 

Byte 
8 

Byte 
9 

Byte 
10 

Byte 
11 

Byte 
12 

Bit 0 

DEST 
C/S 1 

DEST 
C/S 2 

DEST 
C/S 3 

DEST 
C/S 4 

DEST 
C/S 5 

DEST 
C/S 6 

SRC 
C/S 1 

SRC 
C/S 2 

SRC 
C/S 3 

SRC 
C/S 4 

SRC 
C/S 5 

SRC 
C/S 6 

SRC 
SSID 

Bit 1 

Bit 2 

Bit 3 

Bit 4 

DEST 
SSID 

Bit 5 

Bit 6 UI PID CONTROL 

Bit 7 FEC 
LEVEL 

HDR 
TYPE PAYLOAD BYTE COUNT 

Subfields spanning Bit 6 and Bit 7 have MSB on the left. SSID are four-bit subfields. 
Callsigns are packed in DEC SIXBIT encoding. 

 

Type 1 Header Control and Addressing Subfields 
The Type 1 Header is composed of several fields found in the AX.25 header, though they are translated
and compressed into an IL2P format. Type 1 Headers do not support AX.25 repeater callsign 
addressing, Modulo-127 extended mode window sequence numbers, nor any callsign characters that 
cannot translate to DEC SIXBIT. If these cases are encountered during IL2P packet encoding, the 
encoder switches to Type 0 Transparent Encapsulation. 
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Payload Byte Count Subfield 
The Payload Byte Count is stored in the header as a 10-bit subfield (possible values 0-1023). The 
count represents the total number of data bytes stored in all payload blocks following the header. The 
count excludes the header, and all parity symbols appended to payload blocks. See the Payload Blocks 
section of this document for a description of how payload parity symbols are appended to payload 
blocks. 

UI Subfield 
AX.25 specifies 3 types of frames: Information, Supervisory, and Unnumbered. Each has different uses 
for the AX.25 Control field, and only some have a PID field. All AX.25 Information frames have a PID 
field. AX.25 Supervisory frames do not have a PID field. AX.25 Unnumbered frames do not have a PID 
field, unless their Control field is set to the Unnumbered Information (UI) opcode. The IL2P Type 1 
Header UI subfield is 1 bit and is set only for AX.25 Unnumbered Information frames to signal that the 
PID field exists for a U-Frame. 

PID Subfield 
In Type 1 header mapping, IL2P maps the AX.25 8-bit PID field into a 4-bit IL2P subfield. The IL2P PID 
subfield is also used to identify the AX.25 frame type, which informs the encoding and decoding of the 
IL2P Control subfield. 
 

IL2P AX.25 PID Code Mapping 

IL2P PID Translation AX.25 PID 
0x0 AX.25 Supervisory Frame (No PID byte) Omit PID 
0x1 AX.25 Unnumbered Frame (No PID byte, except UI) Omit PID 
0x2 AX.25 Layer 3 yy10yyyy or yy01yyyy 
0x3 ISO 8208 / CCIT X.25 PLP 0x01 
0x4 Compressed TCP/IP 0x06 
0x5 Uncompressed TCP/IP 0x07 
0x6 Segmentation fragment 0x08 
0x7 Future  
0x8 Future  
0x9 Future  
0xA Future  
0xB ARPA Internet Protocol 0xCC 
0xC ARPA Address Resolution 0xCD 
0xD FlexNet 0xCE 
0xE TheNET 0xCF 
0xF No L3 0xF0 

Control Subfield 
The Control Subfield contains 7 bits, and its mapping depends on the translated AX.25 frame type. 
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Translated AX.25 I-Frame Control Subfield 

All AX.25 I-Frames are considered commands. Therefore, IL2P omits the Command (C) bit for 
translated I-Frames. This subfield contains a Poll/Final (P/F) bit, receive sequence N(R), transmit 
sequence N(S). 
 

Translated AX.25 I-Frame Control Subfield Map 
Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
P/F N(R) N(S) 

Translated AX.25 S -Frame Control Subfield 

AX.25 S-Frames can be one of 4 opcodes. All include a receive sequence number N(R), and a C bit. 
 

Translated AX.25 S-Frame Control Subfield Map 
 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
 N(R) C OPCODE 

RR Receive Ready N(R) C 0 0 
RNR Receive Not Ready N(R) C 0 1 
REJ Reject N(R) C 1 0 
SREJ Selective Reject N(R) C 1 1 

Translated AX.25 U-Frame Control Subfield 

AX.25 U-Frames contain an opcode, P/F bit, and C bit. Certain opcodes are always commands or 
responses, some can be either. There are no sequence numbers in U-Frames. 
 

Translated AX.25 U-Frame Control Subfield Map 
  Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

  P/F OPCODE C  

command SABME set async balanced mode extended Not supported, send as 
Transparent 

command SABM set async balanced mode P 0 0 0 1  
command DISC disconnect P 0 0 1 1  
response DM disconnect mode F 0 1 0 0  
response UA unnumbered acknowledge F 0 1 1 0  
response FRMR frame reject F 1 0 0 0  

either UI unnumbered information P/F 1 0 1 C/R  
either XID exchange identification P/F 1 1 0 C/R  
either TEST P/F 1 1 1 C/R  

Payload Blocks 
Each payload block forms a contiguous RS code block once parity is added. RS codes can correct a 
number of erroneous symbols in a code block equal to half the number of parity symbols. So a code 
block with 2 parity symbols can recover one erroneous symbol anywhere in the code block.  
Baseline FEC block lengths and parity counts in IL2P are designed to provide roughly 1.5% 
symbol-error-rate recovery in the payload blocks. The number of parity symbols added to each block 
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varies based on the size of the block. To achieve that, the following procedure is conducted by the 
transmitter to calculate the number of payload blocks and parity symbols required to compose the 
packet: 

Baseline FEC Payload Block Size Computations 
payload_block_count = Ceiling(payload_byte_count / 247) 
small_block_size = Floor(payload_byte_count / payload_block_count) 
large_block_size = small_block_size + 1 
large_block_count = payload_byte_count - (payload_block_count * small_block_size) 
small_block_count = payload_block_count - large_block_count 
 
Large blocks are 1 byte bigger than small blocks. Not every packet requires large blocks, they exist to 
carry remainder bytes. If small_block_size divides evenly into payload_byte_count, then the packet can 
be encoded without large blocks. Large blocks, if they exist, are always placed closest to the header 
when the packet is assembled. 
 
Worked examples: 
 

IL2P Baseline FEC Payload Block Count Examples 

Payload Byte Count 100 236 512 1023 

Small Block Size 100 236 170 204 

Large Block Size 101 237 171 205 

Large Block Count 0 0 2 3 

Small Block Count 1 1 1 2 

Baseline FEC Parity Symbol Count Computation 
The number of parity symbols appended to each payload block is driven by small_block_size. 
 
parity_symbols_per_block = (small_block_size / 32) + 2 
 
The encoder will append 2, 4, 6, or 8 parity symbols per payload block. The maximum small_block_size
for each parity symbol count is given below. 
 

Maximum small_block_size 
Parity Symbols per 

Block 
Maximum 

small_block_size 
2 61 

4 123 

6 185 

8 247 
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Max FEC Payload Block Size Computations 
Under the Max FEC scheme, the encoder will always append 16 parity symbols per payload block, 
regardless of block size. This provides a minimum of roughly 3% symbol-error-rate recovery in the 
payload blocks. Shorter packets benefit from higher error recovery capacity. 
 
payload_block_count = Ceiling(payload_byte_count / 239) 
small_block_size = Floor(payload_byte_count / payload_block_count) 
large_block_size = small_block_size + 1 
large_block_count = payload_byte_count - (payload_block_count * small_block_size) 
small_block_count = payload_block_count - large_block_count 
parity_symbols_per_block = 16 
 

IL2P Transmit Encoding Procedure for AX.25 KISS Data 
1. Place Sync Word in the first three bytes of output buffer 
2. Extract all AX.25 header fields 
3. Check AX.25 header fields for compatibility with Type 01 Header 

If AX.25 Fields Type 1 Compatible 
4. Compose IL2P Control & Addressing Field and place in output buffer 
5. Initialize LFSR to initial conditions 
6. Scramble the output buffer starting at the Control & Addressing Field 
7. RS Encode output buffer starting at the Control & Addressing Field 
8. Count payload bytes in AX.25 input data and perform Payload Block Size computations 
9. Perform Parity Symbol Count computation 
10. Scramble then RS encode each payload block (large blocks closest to header) 
11. Send output buffer data to transmitter (AFSK or GFSK modulator) 

If AX.25 Fields Not Type 1 Compatible Send As Type 0 
4. Count all bytes in AX.25 input data and perform Payload Block Size computations 
5. Perform Parity Symbol Count computation 
6. Place PAYLOAD BYTE COUNT subfield in Control & Addressing Field (all other fields 0) 
7. Scramble the output buffer starting at the Control & Addressing Field 
8. RS Encode output buffer starting at the Control & Addressing Field 
9. Scramble then RS encode each payload block (large blocks closest to header) 
10. Send output buffer data to transmitter (AFSK or GFSK modulator) 

 

IL2P Receive Decoding Procedure for KISS AX.25 Data 
1. Search receive bitstream for Sync Word match 

On Sync Word Match Within 1 Bit Tolerance 
2. Collect next 15 bytes as IL2P Header 
3. RS Decode IL2P Header 
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If RS Decode Successful 
4. Initialize LFSR to initial conditions 
5. Unscramble 13 byte Control & Addressing Field 
6. Extract IL2P Control & Addressing Field and translate to AX.25 header in KISS  buffer 
7. Perform Payload Block Size computations on PAYLOAD BYTE COUNT 
8. Perform Parity Symbol Count computation 
9. Collect payload blocks from receive bitstream according to results of Step 7 and 8 
10. RS decode and then unscramble each payload block 
11. Place unscrambled data in KISS buffer and send to host 
12. Return to Step 1 

If RS Decode of Header or Any Payload Block Unsuccessful 
13. Discard packet 
14. Return to Step 1 

Comparative Protocol Efficiency Analysis 
Protocol Efficiency in the graph below shows the percentage of payload bytes that make up the packet, 
excluding Preamble. The IL2P Header and Sync Word consume 18 bytes, so efficiency generally 
increases as packet size grows. The sawtooth bumps in the graph represent Payload Byte Counts 
where an additional code block is required to contain the payload.  
 
For comparison, the efficiency of AX.25 and FX.25 (255,239) protocols are included on the graph. The 
FX.25 line is computed using the smallest block size compatible with the payload size. The costs of 
bit-stuffing incurred under AX.25 and FX.25 are ignored. 
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Example Encoded Packets 
These examples are intended for use as verification samples to help individuals implementing their own 
IL2P encoders and decoders. Note that all AX.25 data samples below lack opening and closing flags, 
and are not bit-stuffed. All IL2P data samples below lack Sync Word. 

AX.25 S-Frame 
This frame sample only includes a 15 byte header, without PID field. 
Destination Callsign: KA2DEW-2 
Source Callsign: KK4HEJ-7 
N(R): 5 
P/F: 1 
C: 1 
Control Opcode: 00 (Receive Ready) 

AX.25 data: 

96 82 64 88 8a ae e4 96 96 68 90 8a 94 6f b1 

IL2P Data Prior to Scrambling and RS Encoding: 

2b a1 12 24 25 77 6b 2b 54 68 25 2a 27 

IL2P Data After Scrambling and RS Encoding: 

26 57 4d 57 f1 96 cc 85 42 e7 24 f7 2e 8a 97 

AX.25 U-Frame 
This is an AX.25 Unnumbered Information frame, such as APRS. 
Destination Callsign: CQ    -0 
Source Callsign: KK4HEJ-15 
P/F: 0 
C: 0 
Control Opcode:  3 Unnumbered Information 
PID: 0xF0 No L3 
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AX.25 Data: 

86 a2 40 40 40 40 60 96 96 68 90 8a 94 7f 03 f0 

IL2P Data Prior to Scrambling and RS Encoding: 

63 f1 40 40 40 00 6b 2b 54 28 25 2a 0f 

IL2P Data After Scrambling and RS Encoding: 

6a ea 9c c2 01 11 fc 14 1f da 6e f2 53 91 bd 

AX.25 I-Frame 
This is an AX.25 I-Frame with 9 bytes of information after the 16 byte header. 
Destination Callsign: KA2DEW-2 
Source Callsign: KK4HEJ-2 
P/F: 1 
C: 1 
N(R): 5 
N(S) 4 
AX.25 PID: 0xCF TheNET 
IL2P Payload Byte Count: 9 

AX.25 Data: 

96 82 64 88 8a ae e4 96 96 68 90 8a 94 65 b8 cf 30 31 32 33 34 35 36 37 38 

IL2P Scrambled and Encoded Data: 

26 13 6d 02 8c fe fb e8 aa 94 2d 6a 34 43 35 3c 69 9f 0c 75 5a 38 a1 7f f3 fc 
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References for Further Study 
General background on Polynomial Codes, Error Detection, and Error Correction: 
Widjaja, Indra and Leon-Garcia, Alberto. Communication Networks. New York: McGraw-Hill 2004 
166-190. Print. 
 
A good primer on Reed Solomon codes from the BBC: 
https://downloads.bbc.co.uk/rd/pubs/whp/whp-pdf-files/WHP031.pdf 
 
James Miller’s G3RUH 9600 Modem: 
https://www.amsat.org/amsat/articles/g3ruh/109.html 
 
Another 9600 modem implementation by John Magliacane KD2BD: 
https://www.amsat.org/amsat/articles/kd2bd/9k6modem/9k6modem.html 
 
The AX.25 2.2 specification: 
http://www.ax25.net/AX25.2.2-Jul%2098-2.pdf 
 
The FX.25 draft specification: 
http://www.stensat.org/docs/FX-25_01_06.pdf 
 
Wikipedia DEC SIXBIT encoding: 
https://en.wikipedia.org/wiki/Six-bit_character_code#DEC_six-bit_code 
 
Wikipedia Linear Feedback Shift Registers: 
https://en.wikipedia.org/wiki/Linear-feedback_shift_register 
 
KISS Protocol 
www.ax25.net/kiss.aspx 
 
This document was written by Nino Carrillo, reachable at nino.carrillo@outlook.com. 
 
Changes: 
26 Jan 2020 v0.3: Updated dead link to AX25 specification. 
1 Aug 2020 v0.4: Added Max FEC scheme (16 parity bytes per block), updated protocol efficiency 
graph. 


