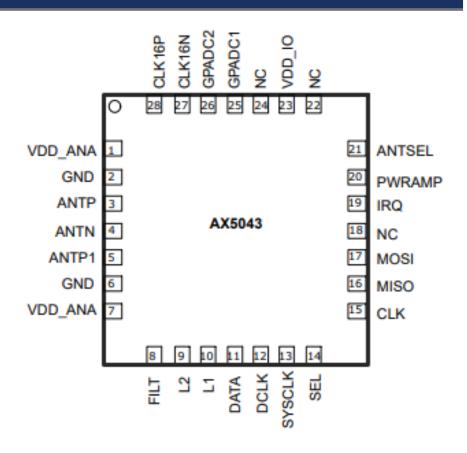
A FLEXIBLE, AFFORDABLE, POWERFUL DIGITAL TRANSCEIVER FOR THE RASPBERRY PI

JONATHAN BRANDENBURG, KF5IDY ARRL AND TAPR DIGITAL


COMMUNICATIONS CONFERENCE, 2018

WHAT DO THE FOLLOWING HAVE IN COMMON?

- **AMSAT**
- Libre Space Foundation
- University of Louisiana
- Portland State University

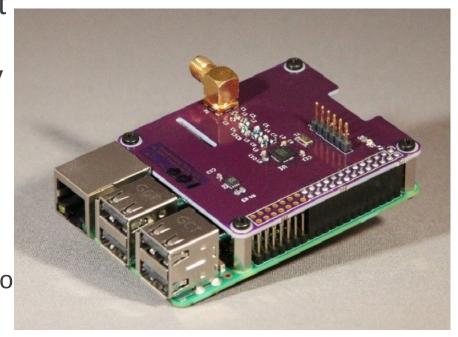
ALL ARE USING THE AX5043 DIGITAL TRANSCEIVER IC

- AMSAT
 - Golf-TEE IHU, Golf-1 IHU, Satellite Simulator
- Libre Space Foundation
 - PocketQube Format Satellite Modules
- University of Louisiana
 - Satellite Beacon, Education Platform
- Portland State University
 - OreSat IHU Transceiver

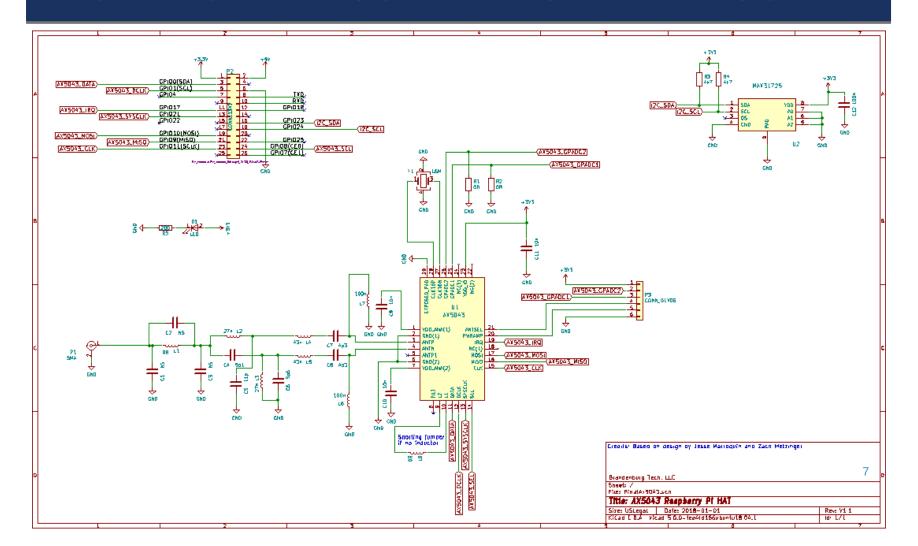
WHAT IS THE ON SEMICONDUCTOR AX5043?

- A single chip, low-power digital transceiver
- Modulation and demodulation is performed on chip.
- For transmit, the host processor sends the data byte stream. The AX5043 adds optional FEC and modulates for transmission
- For reception, the AX5043 demodulates the signal, validates optional FEC then sends the resulting data to the host processor.

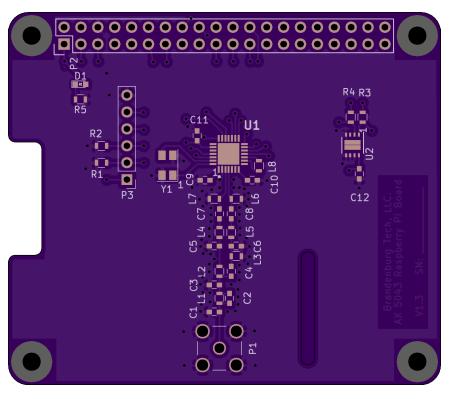
- What modulation standards?
 - FM
 - GMSK
 - ASK
 - GFSK
 - PSK
 - MSK
 - FSK
 - 4-FSK
 - AFSK

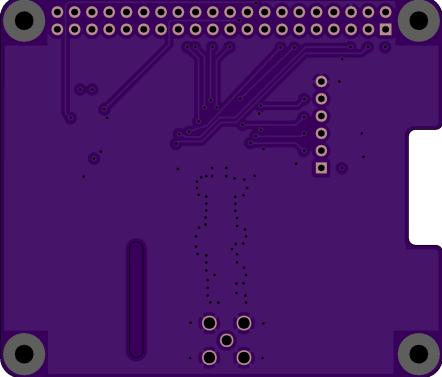

WHAT IS THE AX5043?

- What frequencies?
 - From 27 MHz to 1050 MHz
- What about output power?
 - 16 dBm (40 mW)
 - Of course, may add an external power amplifier
- What about sensitivity?
 - Example: -138 dBm @ 0.1 kbps, 868 MHz, FSK
 - Example: -108 dBm @ 125 kbps, 868 MHz, PSK


- What about chip power requirements?
 - 6.5 mA 9.5 mA when receiving
 - 7.5 mA when transmitting at 0 dBm
 - 48 mA when transmitting at 16 dBm
 - 500 nA power-down mode with clock
 - 50 nA deep sleep current

I WANT TO PLAY!!!


- I do what any of you might do... I create a custom board... for the Raspberry Pi
- Why the Raspberry Pi?
 - It's an affordable experimentation platform
 - It has the peripherals (SPI) to communicate with the AX5043



KICAD FOR THE SCHEMATIC AND LAYOUT

OSHPARK FOR BOARDS

HAND ASSEMBLED

DOES IT WORK?

- Yes!!!
- Developed several sample applications
 - A chat application at GFSK, 435.3 MHz, 4800 symbols/sec, HDLC encoding, CRC-16
 - APRS frames, AFSK, 435.3 MHz, X.25 frames
 - (I know FSK would typically be used at 435.3 MHz. Will talk about the matching network in a moment)

- Key Learning Opportunities:
 - The documentation is a "reference" not a "guide".
 - AX-RadioLab application generates register values and sample code.
 - These register values are sometimes completely unexplained.
 - Generated code specific to On Semiconductor AX8052F100, including use of interrupts.

WHAT ABOUT HAM FREQUENCIES?

- What about Ham frequencies?
- AX 5043 data sheet has reference design to match the IC to a 50 Ohm antenna
 - 169 MHz
 - 433 MHz
 - 470 MHz
 - **868 / 915 MHz**

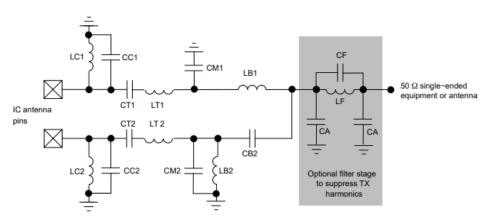
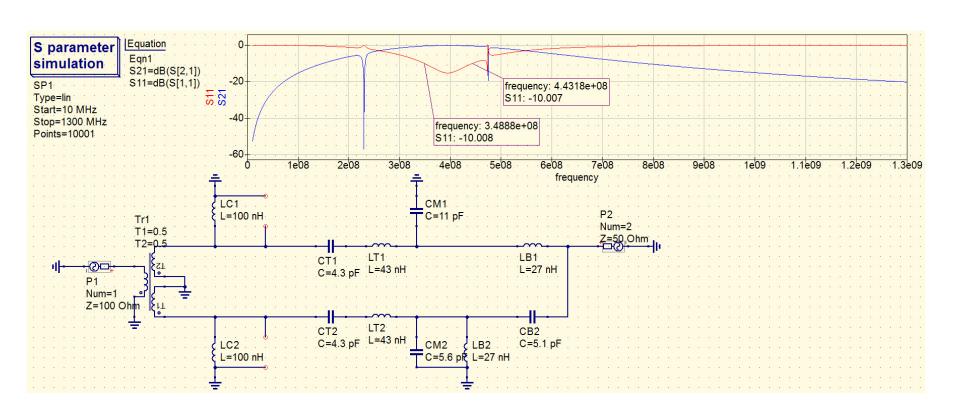
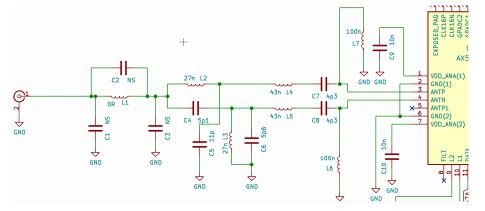
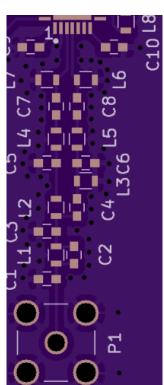



Figure 10. Structure of the Differential Antenna Interface for TX/RX Operation to 50 Ω Single-ended Equipment or Antenna

Table 29. TYPICAL COMPONENT VALUES


Frequency Band	LC1,2 [nH]	CC1,2 [pF]	CT1,2 [pF]	LT1,2 [nH]	CM1 [pF]	CM2 [pF]	LB1,2 [nH]	CB2 [pF]	CF [pF] optional	LF [nH] optional	CA [pF] optional
868 / 915 MHz	18	nc	2.7	18	6.2	3.6	12	2.7	nc	0 Ω	nc
433 MHz	100	nc	4.3	43	11	5.6	27	5.1	nc	0 Ω	nc
470 MHz	100	nc	3.9	33	4.7	nc	22	4.7	nc	0 Ω	nc
169 MHz	150	10	10	120	12	nc	68	12	6.8	30	27


QUITE UNIVERSAL CIRCUIT SIMULATOR (QUCS)

MATCHING NETWORK

- The most interesting part of the schematic is the matching network
 - I populated my boards for 433 MHz
 - Simply populate with different components for other bands

WHAT NEXT?

- Adding a power amplifier
- AMSAT Golf-TEE
 IHU using NXP
 Semiconductor
 MMZ09312BT1
 - 400 1000 MHz
 - ~31.7 dB power gain(@ 900 MHz)

- Planning an onboard GPS for beaconing
- Planning a transverter for higher frequencies

DO YOU WANT ONE?

Questions / Answers

ARRL AND TAPR DIGITAL COMMUNICATIONS CONFERENCE, 2018

CREDITS

- Zach Metzinger (N0ZGO), Jesse Marroquin (K5JXM),
 Bill Reed (NX5R), and Jordan Trewitt (KF5COQ)
 - Design of the Hercules LaunchPad BoosterPack featuring the AX5043
- AMSAT
 - Supporting this platform as the basis for the Golf-TEE IHU