Implementing MACA and Other Useful Improvements to Amateur Packet Radio for Throughput and Capacity

John Bonnett – KK6JRA / NCS820 Steven Gunderson – CMoLR Project Manager

TAPR DCC – 15 Sept 2018

Contents

Introduction

- Communication Methodology of Last Resort (CMoLR)
- Speed & Throughput Tests
 - CONNECT & UNPROTO
- UX.25 UNPROTO AX.25
- Multiple Access with Collision Avoidance (MACA)
 - Hidden Terminals
- Directed Packet Networks
- Brevity
 - Directory Services
- Trunked Packet
- Conclusion

Background

Mission County – Proverbial:

- Coastline, Earthquake Faults, Mountains & Hills, and Missions
- Frequent Natural Disasters
 - Wildfires, Earthquakes, Floods, Slides & Tsunamis
- Extensive Packet Networks
 - EOCs Fire & Police Stations Hospitals
 - Legacy 1200 Baud Packet Networks
 - Outpost and Winlink 2000 Messaging Software

Background

Mission County – Proverbial:

- Coastline, Earthquake Faults, Mountains & Hills, and Missions
- Frequent Natural Disasters
 - Wildfires, Earthquakes, Floods, Slides & Tsunamis
- Extensive Packet Networks
 - EOCs Fire & Police Stations Hospitals
 - Legacy 1200 Baud Packet Networks
 - Outpost and Winlink 2000 Messaging Software

Community Emergency Response Teams:

- OK Drills
- Neighborhood Surveys
- Triage Information
 - CERT Form #1
- Transmit CERT Triage Data to Public Safety Situational Awareness

OK

ΛΜΕΟΙΑΤΕ

Background & Objectives (cont)

Communication Methodology of Last Resort (CMoLR):

- Mission County Project: 2012 2016
- Enable Emergency Data Comms from CERT to Public Safety

Background & Objectives (cont)

Communication Methodology of Last Resort (CMoLR):

- Mission County Project: 2012 2016
- Enable Emergency Data Comms from CERT to Public Safety
- Objectives:
 - Independent Data Communication System
 - Off the "Grid" Phone, Cell, Cable & Internet
 - Interoperable
 - Amateur Radio and Land Mobile Radio (LMR) Radios
 - Analog and AX.25
 - "Make It Work with What We Have"
 - Urban Areas Security Initiative (UASI) Grant Radios

Background & Objectives (cont)

Communication Methodology of Last Resort (CMoLR):

- Mission County Project: 2012 2016
- Enable Emergency Data Comms from CERT to Public Safety
- Objectives:
 - Independent Data Communication System
 - Off the "Grid" Phone, Cell, Cable & Internet
 - Interoperable
 - Amateur Radio and Land Mobile Radio (LMR) Radios
 - Analog and AX.25
 - "Make It Work with What We Have"
 - Urban Areas Security Initiative (UASI) Grant Radios

Preliminary Test / Demo:

- Depiction Mapping Elements Location + Properties
- E-mail → -Header → XML → APRS → XML → +Header → E-mail
- 1200 Baud UNPROTO 1 Packet a Few Seconds

SPEED & THROUGHPUT TESTS

Speed & Throughput Tests – CONNECT

Winlink 2000 Reported Throughput:

Winlink 2000	Time	Time	me Binary CPS		Ideal Speed	Throughput
Binary - (4,000 bytes)	min	seconds	4,000/seconds		CPS	%
Packet (1200) direct	2	120	– 33		120	28%
Packet (1200) 1 node	2.5	150	27		120	22%
Packet (9600) direct	1	60	L> 67	2X	960	7%

Frequently Asked Questions (FAQ) about Winlink 2000 – Q&A 170, https://www.winlink.org/sites/default/files/wl2k_faq_20150314.pdf, March 14, 2015. Winlink FAQ (Frequently Asked Questions - with Answers!), https://www.winlink.org/content/winlink_faq_frequently_asked_questions_answers_2282018. ftp://autoupdate.winlink.org/User%20Programs/wl2k_faq.pdf, February 28, 2018.

Speed & Throughput Tests – CONNECT

Winlink 2000 Reported Throughput:

Winlink 2000	Time	Time	Binary CPS	Ideal Speed	Throughput
Binary - (4,000 bytes)	min	seconds	4,000/seconds	CPS	%
Packet (1200) direct	2	120	– 33	120	28%
Packet (1200) 1 node	2.5	150	27	120	22%
Packet (9600) direct	1	60	67 2X	960	7%

Frequently Asked Questions (FAQ) about Winlink 2000 – Q&A 170, https://www.winlink.org/sites/default/files/wl2k_faq_20150314.pdf, March 14, 2015. Winlink FAQ (Frequently Asked Questions - with Answers!), https://www.winlink.org/content/winlink_faq_frequently_asked_questions_answers_2282018. ftp://autoupdate.winlink.org/User%20Programs/wl2k_faq.pdf, February 28, 2018.

Outpost Measured Throughput:

Outpost	Time	ASCII CPS	Ideal Speed	Throughput
ASCII - (2,410 bytes)	sec	2,410/time	CPS	%
Packet (1200) - KPC-9612 / Motorola	53	– 45	120	38%
Packet (9600) - KPC-9612 / Motorola	20	→ 120 2.7X	960	12%

- Connected Throughputs Were Less Than Ideal
- 9600 Baud Did Not Provide Expected Several-Fold Increase
 - Frequent TX/RX Turn-Arounds Exceeded Data Transfer Time

<u>1200 Baud CONNECT vs. UNPROTO Throughput</u>:

1200 Baud	PACLEN	File Size	Time	CPS	Ideal Speed	Throughput
Mode	/ Frame	cmpr (uncmp)	sec		CPS	%
CONNECT - WL2K	128 / 4?	4,000 (binary)	120	33	120	28%
CONNECT - Outpost	128 / 6	2,410 (ASCII)	53	45	120	38%

<u>1200 Baud CONNECT vs. UNPROTO Throughput</u>:

1200 Baud	PACLEN	File Size	Time	CPS	Ideal Speed	Throughput
Mode	/ Frame	cmpr (uncmp)	sec		CPS	%
CONNECT - WL2K	128/4?	4,000 (binary)	120	33	120	<u> </u>
CONNECT - Outpost	128 / 6	2,410 (ASCII)	53	45	120	38%
UNPROTO	256 / 6	1,588 (2,410)	24	66	120	55%
UNPROTO	256 / 6	4,520 (7,959)	62	72	120 2X	→ 60%
UNPROTO	256 / 19	4,520 (7,959)	57	82	120	68%
UNPROTO - Simplex	256 / 16	8,285 (22,495)	78	101	120	84% 🗲
UNPROTO - Analog Rptr	256 / 16	8,285 (22,495)	84	94	120	78%

3X

1200 Baud CONNECT vs. UNPROTO Throughput:

1200 Baud	PACLEN	File Size	Time	CPS	Ideal Speed	Throughput	
Mode	/ Frame	cmpr (uncmp)	sec		CPS	%	
CONNECT - WL2K	128 / 4?	4,000 (binary)	120	33	120		- 28% —
CONNECT - Outpost	128 / 6	2,410 (ASCII)	53	45	120		38%
UNPROTO	256 / 6	1,588 (2,410)	24	66	120		55%
UNPROTO	256 / 6	4,520 (7,959)	62	72	120 2X	<u>ل</u>	60%
UNPROTO	256 / 19	4,520 (7,959)	57	82	120	68%	
UNPROTO - Simplex	256 / 16	8,285 (22,495)	78	101	120		84% 🗲
UNPROTO - Analog Rptr	256 / 16	8,285 (22,495)	84	94	120		78%

Larger UNPROTO Packets and Longer Windows (Frames)

- Improve Throughput Compared with CONNECT
- 2X 3X Overall
- Larger Packets Provides Greater Benefit Compared with Frame Size
- Settled on Default PACLEN of 256 and Frame Size of 16
 - Send 1 ACK per 4KB
- Simplex Throughput of 70-80% is Achievable

3X

• 9600 Baud CONNECT vs. UNPROTO Throughput:

-	9600 Baud	PACLEN	File Size	Time	CPS	Ideal Speed	Throughput
1	Mode	/ Frame	bytes	sec		CPS	%
•	CONNECT - WL2K	128 / 4?	4,000 (binary)	60	67	960	7%
•	CONNECT - Outpost	128/6	2,410 (ASCII)	20	120	960	12%

• 9600 Baud CONNECT vs. UNPROTO Throughput:

9600 Baud	PACLEN	File Size	Time	CPS	Ideal Speed	Throughput	
Mode	/ Frame	bytes	sec		CPS	%	
CONNECT - WL2K	128/4?	4,000 (binary)	60	67	960	7%	
CONNECT - Outpost	128/6	2,410 (ASCII)	20	120	960	12%	
UNPROTO - KPC-9612	256 / 7	8,285 (22,495)	20	412	960 6X	→ 43%	
UNPROTO - KPC-9612	256 / 17	8,285 (22,495)	16	514	960 7X	·-> 53%	_
UNPROTO - KPC-9612	256 / 96	21,621 (77,745)	26	830	960	87% 🗲	12

12X

9600 Baud CONNECT vs. UNPROTO Throughput:

9600 Baud	PACLEN	File Size	Time	CPS	Ideal Speed	Throughput	
Mode	/ Frame	bytes	sec		CPS	%	
CONNECT - WL2K	128 / 4?	4,000 (binary)	60	67	960	– 7% – –	
CONNECT - Outpost	128 / 6	2,410 (ASCII)	20	120	960	12%	
UNPROTO - KPC-9612	256 / 7	8,285 (22,495)	20	412	960 6X	→ 43%	
UNPROTO - KPC-9612	256 / 17	8,285 (22,495)	16	514	960 7X	• -> 53%	
UNPROTO - KPC-9612	256 / 96	21,621 (77,745)	26	830	960	87% 🗲	12
UNPROTO - Internal TNC	256 / 96	21,621 (77,745)	36	600	960	62% 🗲	9>
Kenwood TM-D710G							
UNPROTO - Internal TNC	256 / 16	21,621 (77,745)	43	487	960	51% 🗲 -	7>
Kenwood TM-D710G							
UNPROTO - Internal TNC	256 / 128	21,621 (77,745)	37	566	960	59%	
Kenwood TM-D710G							

Larger UNPROTO Packets and Longer Windows (Frames)

- Improve Throughput Compared with CONNECT
- 7X 12X Overall
- 9600 Baud Provided Expected Several-Fold Increase

UX.25 – UNPROTO AX.25

UNPROTO AX.25 – UX.25

Packet Design:

- Follows APRS[®] Conventions - Experimental APRS Packets

AX.25 Unnumbered Frames (U) – Outer Wrapper

• NO Changes to AX.25 !!!

UX.25 Rides Inside AX.25 Data Payload – Secondary Header

• Appliqué – Within AX.25

	AX.25 Unnumbered Frame (U)									
Primary Header				Payloa	ad			Error D	Error Detection	
Flag Address Con	ntrol		Info						Flag	
	Γ			UX.25 Com	mand					
		Flag		Data	1		Close			
Small Headers										
– Minimize Impact				UX.25 Me	ssage					
– 6 Bytes Maximun	n 📕		Seconda	ry Header		Pay	load			
looludingu Idontifi		Flag	Addressing	Sequence #	Туре	Data	Close			
- including. identili	er									
Close			UX.25 File Transfer							
- 250 Byte Payload	1	Secondary Header Payload								
		Flag	Start	Sequence #	Туре	Data	Close			

• <u>Command</u>:

- Similar to APRS® Packets - Simple Commands Plus Data

UX.25 Command					
Flag Data Close					

Broadcast Packets

Description
Who's My Repeater?
l'm Your Smart Host, e.g. Digipeater
My Call Sign
Coordinates
GMT, etc.

Directed Packets

Description
Broadcast Request for Repeater
My Call Sign + Call Signs Heard
Address + Damage Assessment
KML, KMZ, SHP

• <u>Message</u>:

- Secondary Header - Addressing, Sequence & Type

UX.25 Message								
	Secondary Header Payload Payload							
Identifier	Addressing	g (optional)	Q	Command	Data	Close		
	Source Destination		Unsequenced					
Identifier	Addro	essing	Q	Туре	Data	Close		
	Source	Destination	Sequence #	Plain Text				
				/ Encoded				

Command	Description
SYN	Sync, i.e. Login
АСК	Login: +seq or OK, Data: +seq
NAK	Login, Unknown User, Bad Passwd, File Too Large, Data: +seq-seq-seq
SY / SN	Send Yes: Packets, Zip Size, Orig Size
DAT	Data
EOF	End-of-file
CLO	Close

Sync (SYN) Packet:

- Core to File Transfer Combines Multiple Functions
- Avoids Lengthy Session Protocol Exchanges
- Follows Unix-to-Unix Copy (UUCP) Conventions

Login	Passwrd	SN	Job Name	Org File Name	Cmd	Pkts	Zip	Org	Jobs	Notify
user@domain.net	LetMeIn	sernum	1309D100502000	TestData2.txt	uucp	4	706	956	0	notify
1	2	3	4	5	6	7	8	9	10	11

Field #	Description	Authentication	UUCP	Packet
1	Remote Account Login	Х		
2	Remote Password	Х		
3	Remote Serial Number	Х		
4	Job Name		Х	
5	Original File Name		Х	
6	Job Command		Х	
7	Expected Packets			Х
8	Compressed File Size (bytes)			Х
9	Original File Size (bytes)			Х
10	Expected Jobs		Х	
11	Notify		Х	

File Transfer:

- Follows Sync (SYN) and Send Yes (SY) Message Packets

1 [Sta: ChrB <pk ChrB</pk][rt S (7) T> (7) + I	2 3][eq 1 Ty 0 (ntToChrId(s	3 250](Data) ype 0 Data seg) + IntT	[] End ChrB(4) <eot> OAxSeg(typ</eot>	' Chr ' Chr ' Chr ' Chr ' Chr ' Chr	B(2), B(3), B(4), B(7), B(13), ata +	STX ETX EOT BEL CR	Ctrl-B Ctrl-C Ctrl-D Ctrl-G Ctrl-M) + ChrB	Start of a Text Returns to Command End of a Text/Pack Start of a Packet Carriage Return (13)	Mode
Seat	0-3534	` 4 (188*188))	1(11	,		,	,	、 ,	
beq.	0 3334	4 (100 100))							
Type:	0	SYN Login/	/Sync Packe	t: Login H	Passwor	d SN J	ob Fil	e Expctp	kts Cmprlen Origlen	
	10-49	DAT Packet	t: 10 Sende	r Pausing	for AC	Ks/NAK	s, 11-	24 Expec	t More Data Pkts	
	150	DAT EOF pa	acket							
	170	NAK Login,	, Unknown U	ser, Bad H	Passwor	d, Fil	е Тоо	Large		
	171	NAK Packet	t Data: +se	q-seq-seq	Where	+ is	an ACK	, – is a	NAK	
	172 NAK File, Corrupt File Data									
	180	ACK Login:	: +seq or O	К						
	181	ACK Packet	t, Data: +s	eq						
	182	ACK File								
	188	CLO Packet	t							
Data: Can be up to 250 Characters, at 251 Characters the TNC Rolls Another Packet										
EOT: Char(4) and Char(13) if Packet Less than 255										

MULTIPLE ACCESS WITH COLLISION AVOIDANCE (MACA)

Media Access Control

Amateur Packet Radio:

- ALOHAnet
- Carrier Sense Multiple Access (CSMA)
 - Stations Listen for Transmissions Carrier Sense (CS)
 - Wait for Predetermined or Random Times Following Transmissions
 - Stations Decide When They Transmit

- Stations Try to be Polite and Not Interrupt Other Stations

Media Access Control

Amateur Packet Radio:

- ALOHAnet
- Carrier Sense Multiple Access (CSMA)
 - Stations Listen for Transmissions Carrier Sense (CS)
 - Wait for Predetermined or Random Times Following Transmissions
 - Stations Decide When They Transmit
- Stations Try to be Polite and Not Interrupt Other Stations

Hidden & Exposed Terminals:

- CSMA Works When All Stations Can Hear Each Other
 - Blockage and Distance Can Preclude Stations Monitoring Traffic
 - Stations May Transmit When Others Are Transmitting
 - Stations May Not Transmit When OK

Media Access Control

Amateur Packet Radio:

- ALOHAnet

•

- Carrier Sense Multiple Access (CSMA)
 - Stations Listen for Transmissions Carrier Sense (CS)
 - Wait for Predetermined or Random Times Following Transmissions
 - Stations Decide When They Transmit
- Stations Try to be Polite and Not Interrupt Other Stations

Hidden & Exposed Terminals:

- CSMA Works When All Stations Can Hear Each Other
 - Blockage and Distance Can Preclude Stations Monitoring Traffic
 - Stations May Transmit When Others Are Transmitting
 - Stations May Not Transmit When OK

Multiple Access with Collision Avoidance (MACA):

Proposed – 9th ARRL Computer Networking Conference

<u>Hidden Terminals</u>:

- Station (A) Can't Hear Station (B) and Vice Versa Blocked by Hill
- Both Stations Talk to Digipeater (R) at Same Time

<u>Hidden Terminals</u>:

- Station (A) Can't Hear Station (B) and Vice Versa Blocked by Hill
- Both Stations Talk to Digipeater (R) at Same Time

Exposed Terminal:

- Digipeater (R) is Talking to Station (A)

<u>Hidden Terminals</u>:

- Station (A) Can't Hear Station (B) and Vice Versa Blocked by Hill
- Both Stations Talk to Digipeater (R) at Same Time

Exposed Terminal:

- Digipeater (R) is Talking to Station (A)
- Station (B) Wants to Talk to Station (C) Its OK (A) is Out of Range

<u>Hidden Terminals</u>:

- Station (A) Can't Hear Station (B) and Vice Versa Blocked by Hill
- Both Stations Talk to Digipeater (R) at Same Time

Exposed Terminal:

- Digipeater (R) is Talking to Station (A)
- Station (B) Wants to Talk to Station (C) Its OK (A) is Out of Range
- Station (B) Thinks Channel is Busy It Doesn't Transmit

Multiple Access with Collision Avoidance (MACA):

- Request to Send (RTS)
- Clear To Send (CTS)
- Digipeaters Control Transmissions

Multiple Access with Collision Avoidance (MACA):

– Channel Pilots

- Request to Send (RTS)
- Clear To Send (CTS)
- Digipeaters Control Transmissions

• Station (A) Sends a File to Digipeater (R) – After RTS/CTS

Multiple Access with Collision Avoidance (MACA):

- Request to Send (RTS)
- Clear To Send (CTS)
- Digipeaters Control Transmissions

- Station (A) Sends a File to Digipeater (R) After RTS/CTS
- Station (B) Comes on Air and Does Not Hear Station (A)

Multiple Access with Collision Avoidance (MACA):

- Request to Send (RTS)
- Clear To Send (CTS)
- Digipeaters Control Transmissions

- Station (A) Sends a File to Digipeater (R) After RTS/CTS
- Station (B) Comes on Air and Does Not Hear Station (A)
- Station (B) Sends RTS to Digipeater (R)

Multiple Access with Collision Avoidance (MACA):

- Request to Send (RTS)
- Clear To Send (CTS)
- Digipeaters Control Transmissions

- Station (A) Sends a File to Digipeater (R) After RTS/CTS
- Station (B) Comes on Air and Does Not Hear Station (A)
- Station (B) Sends RTS to Digipeater (R)
- Digipeater (R) Does Not Respond to Station (B) RTS with CTS
 - RTS May Result in Station (A) Lost Packet

Multiple Access with Collision Avoidance (MACA):

- Request to Send (RTS)
- Clear To Send (CTS)
- Digipeaters Control Transmissions

- Station (A) Sends a File to Digipeater (R) After RTS/CTS
- Station (B) Comes on Air and Does Not Hear Station (A)
- Station (B) Sends RTS to Digipeater (R)
- Digipeater (R) Does Not Respond to Station (B) RTS with CTS
 - RTS May Result in Station (A) Lost Packet
- Station (B) Waits Until CTS is Received

Multiple Access with Collision Avoidance (MACA):

- Stations Overhearing RTS/CTS Exchanges Know to Keep Silent
- File Size Clues How Long

Multiple Access with Collision Avoidance (MACA):

Overheard Conversations

- Stations Overhearing RTS/CTS Exchanges Know to Keep Silent
- File Size Clues How Long

Station (B) RTS/CTS Exchange with Digipeater (R)

Multiple Access with Collision Avoidance (MACA):

- Stations Overhearing RTS/CTS Exchanges Know to Keep Silent
- File Size Clues How Long

- Station (B) RTS/CTS Exchange with Digipeater (R)
- Station (D) Hears Both Sides of Exchange and Keeps Silent

Multiple Access with Collision Avoidance (MACA):

- Stations Overhearing RTS/CTS Exchanges Know to Keep Silent
- File Size Clues How Long

- Station (B) RTS/CTS Exchange with Digipeater (R)
- Station (D) Hears Both Sides of Exchange and Keeps Silent
- Station (A) & (C) Hear Either Side and Know to Keep Silent
 - Station (A) Does Not Hear Station (B) RTS but Hears Digipeater (R) CTS
 - Station (C) Hears Station (B) RTS but Does Not Hear Digipeater (R) CTS

Multiple Access with Collision Avoidance (MACA):

- Stations Overhearing RTS/CTS Exchanges Know to Keep Silent
- File Size Clues How Long

- Station (B) RTS/CTS Exchange with Digipeater (R)
- Station (D) Hears Both Sides of Exchange and Keeps Silent
- Station (A) & (C) Hear Either Side and Know to Keep Silent
 - Station (A) Does Not Hear Station (B) RTS but Hears Digipeater (R) CTS
 - Station (C) Hears Station (B) RTS but Does Not Hear Digipeater (R) CTS
- Stations (A), (C) & (D) Wait Until Negotiated Transfers are Complete

MACA / UX.25 Equivalence:

Protocol	Request	quest Proceed		File Size	Estimate Packets
MACA	Request to Send (RTS)	Clear to Send (CTS)	_	Х	_
UX.25	Sync / Login (SYN)	Send Yes (SY)	Send No (SN)	Х	Х

– Transmit Time Estimate

- MACA RTS/CTS File Size
- UX.25 SYN/SY File Sizes and Estimate Packets
 - CTS and SY Repeat Sizes for Stations That Do Not Hear Initial RTS/SYN
- RTS/CTS and SYN/SY are Used for Multi-Packet File Transfers
 - Excessive Overhead for Single Command and Message Packets

MACA / UX.25 Equivalence:

Protocol	Request	Request Proceed		File Size	Estimate Packets
MACA	Request to Send (RTS)	Clear to Send (CTS)	_	Х	_
UX.25	Sync / Login (SYN)	Send Yes (SY)	Send No (SN)	Х	Х

– Transmit Time Estimate

٠

- MACA RTS/CTS File Size
- UX.25 SYN/SY File Sizes and Estimate Packets
 - CTS and SY Repeat Sizes for Stations That Do Not Hear Initial RTS/SYN
- RTS/CTS and SYN/SY are Used for Multi-Packet File Transfers
 - Excessive Overhead for Single Command and Message Packets

UX.25 Includes MACA Functionality:

- Monitor Other Station's Handshakes UNPROTO
 - Not Dependent Upon Carrier Sense (CS)

OTHER USEFUL IMPROVEMENTS

Directed Packet Networks

CSMA's Limitations:

- Stations Decide When They Transmit
 - Works Well for Lightly Loaded Open Networks e.g. APRS
 - Single Packet Transmissions
 - Does Not Work Well for Heavily Loaded Networks
 - Mixed Traffic Short & Long
 - Digipeater Unknowns
 - Type (Message/E-mail) Grade (Urgent/Priority/Routine) Message Length

Directed Packet Networks

<u>CSMA's Limitations</u>:

- Stations Decide When They Transmit
 - Works Well for Lightly Loaded Open Networks e.g. APRS
 - Single Packet Transmissions
 - Does Not Work Well for Heavily Loaded Networks
 - Mixed Traffic Short & Long
 - Digipeater Unknowns
 - Type (Message/E-mail) Grade (Urgent/Priority/Routine) Message Length

Directed (Voice) Networks:

- Radio Amateurs Solved These Problems for Voice Nets
 - Scripts are Sophisticated Media Access Control (MAC)
 - Check In (CQ)
 - Identify Traffic (Urgent, Priority, Routine)
 - Network Control Either Grants or Doesn't Grant Permission
 - Short Breaks
 - Allow Stations to "Break the Net" with Priority/Urgent Traffic

Directed Packet Networks (cont)

- <u>MACA</u>:
 - Foundation to Incorporate Directed Net Principles Into Packet Radio

Directed Packet Networks (cont)

- <u>MACA</u>:
 - Foundation to Incorporate Directed Net Principles Into Packet Radio
- <u>UX.25</u>:
 - Extends MACA
 - Send Yes (SY) & Send No (SN)
 - Stations No Longer Decide When to Transmit Files
 - Stations Can Be Told NO
 - Digipeaters Have Authority
 - Who & When to Allow Access, and for How Long

Directed Packet Networks (cont)

- <u>MACA</u>:
 - Foundation to Incorporate Directed Net Principles Into Packet Radio
- <u>UX.25</u>:
 - Extends MACA
 - Send Yes (SY) & Send No (SN)
 - Stations No Longer Decide When to Transmit Files
 - Stations Can Be Told NO
 - Digipeaters Have Authority
 - Who & When to Allow Access, and for How Long

<u>Digipeater Limits</u>:

- Station-to-Station Simplex Without Relaying Through Digipeaters
 - RTS/CTS Clue Simplex Stations When "The Coast is Clear"
- Short Single-Packet Commands & Messages
 - 9600 Baud 250 Bytes < 1/2 Second 1 KB Messages < 2 Seconds

Brevity

Increase Throughput:

- All Traffic is Urgent or Priority
 - Human Nature

Emergency Alert FAST MOVING BRUSH FIRE BETWEEN SANTA PAULA, VENTURA, OJAI – GO TO: READYVENTURACOUNTY.ORG

- Message Size is Natural Way to Prioritize Traffic

- Encourage Network Etiquette
- Reliable Short Message Transmission UX.25
 - CONNECT and E-mail are Not Necessary for Reliable Transmission

Proposed Grades & Sizes:

Grade	Message	E-mail Files	Packets Max	Size	Comment
Emergency	Х		1	250 Bytes	Similar to Text Messages
Urgent	Х		2	500 Bytes	Similar to Text Messages
Priority	Х		4	1 KBytes	Bridges Gap with E-mail
Routine		Х	Multiple	10+ KBytes	E-mail is Always Routine

Brevity (cont)

• <u>E-Mail</u>:

- Two-Part Addressing user@domain
- E-mail is Inefficient for Short Messages
 - Headers Can Add Hundreds of Bytes of Overhead

Brevity (cont)

<u>E-Mail</u>:

- Two-Part Addressing user@domain
- E-mail is Inefficient for Short Messages
 - Headers Can Add Hundreds of Bytes of Overhead

<u>Directory Services</u>:

- Message Addresses
 - Two-Part Addressing user@domain Without High E-mail Overhead
- Secondary Source & Destination Addresses
 - Two Byte Addresses in UX.25 Message Header
 - Call Signs, Domain Names, Individual Accounts & Groups
- Digipeater & Super-Node Controllers Host Directory Services
 - Stations Register With and Join Networks to Participate in Directories
 - Stations Send Their Domain & Local Accounts After Checking In
 - Digipeater Nodes and Servers Maintain Common Directory and Distribute
- Makes Packet Networks Easier to Use

Trunked Packet

Mobile Network:

•

- Multiple Digipeaters
 - Last 10-Mile Comms
 - Fixed & Mobile Terminals
- Fast Trunks e.g. Mesh
 - Inter-Digipeater Communication and Coordination

Automatic Handoff Between Digipeaters

Trunked Packet (cont)

Station / Digipeater Handshake:

- Stations Check-In (CQ?) with Digipeaters
- Digipeaters & Super Node Send "I'm Your Smart Host" (SH)

Super-Node / Digipeater / Station Interaction:

- Messages Forwarded to Closest Digipeater
- Digipeaters Coordinate with Individual Stations Using MACA
- Network Handoff Mobile Stations
 - Digipeaters Forwarded Messages as Stations Move

Message vs Packet Level:

- Message Batching and Compression Increased Throughput
 - E-mail & Short Messages Multi-Addresses Inside & Outside Network

Independent of External Internet Servers:

Super-Nodes Fully Capable Smart Hosts

CONCLUSION

Amateur Packet Radio – Well Suited:

- Emergency Communications Between Communities & Public Safety
 - Extend Existing Packet Networks Into Communities Cost Effective

Amateur Packet Radio – Well Suited:

•

- Emergency Communications Between Communities & Public Safety
 - Extend Existing Packet Networks Into Communities Cost Effective

Packet Network Throughput & Capacity Increased:

- Link Protocol & Media Access Control <u>No Hardware Changes</u>
 - 9600 Baud Several-Fold Increase Over 1200 Baud with UNPROTO
 - Overall <u>20-Fold Increase</u> Over Baseline 1200 Baud with CONNECT

Amateur Packet Radio – Well Suited:

- Emergency Communications Between Communities & Public Safety
 - Extend Existing Packet Networks Into Communities Cost Effective

Packet Network Throughput & Capacity Increased:

- Link Protocol & Media Access Control No Hardware Changes
 - 9600 Baud Several-Fold Increase Over 1200 Baud with UNPROTO
 - Overall <u>20-Fold Increase</u> Over Baseline 1200 Baud with CONNECT

MACA – UX.25 + Directed Net:

Solves "Network Hogging" + Hidden & Expose Terminals

Amateur Packet Radio – Well Suited:

- Emergency Communications Between Communities & Public Safety
 - Extend Existing Packet Networks Into Communities Cost Effective

Packet Network Throughput & Capacity Increased:

- Link Protocol & Media Access Control No Hardware Changes
 - 9600 Baud Several-Fold Increase Over 1200 Baud with UNPROTO
 - Overall <u>20-Fold Increase</u> Over Baseline 1200 Baud with CONNECT

MACA – UX.25 + Directed Net:

Solves "Network Hogging" + Hidden & Expose Terminals

<u>Directory Services</u>:

Message Two-Part Addressing – Brevity & Easier to Use

Amateur Packet Radio – Well Suited:

- Emergency Communications Between Communities & Public Safety
 - Extend Existing Packet Networks Into Communities Cost Effective

Packet Network Throughput & Capacity Increased:

- Link Protocol & Media Access Control No Hardware Changes
 - 9600 Baud Several-Fold Increase Over 1200 Baud with UNPROTO
 - Overall <u>20-Fold Increase</u> Over Baseline 1200 Baud with CONNECT

MACA – UX.25 + Directed Net:

Solves "Network Hogging" + Hidden & Expose Terminals

<u>Directory Services</u>:

Message Two-Part Addressing – Brevity & Easier to Use

Trunked Packet:

- Mobile Terminals - Automatic Handoff

Conclusion (cont)

Multiple Access with Collision Avoidance (MACA):

- Originally Proposed for Single-Frequency Amateur Packet Radio Networks. It was hoped:
 - "...it may *finally* make single frequency amateur packet radio networks practical."
 - "...The ability to create usable, ad-hoc, single frequency networks could be very useful in certain situations..."
 - "...This would be especially useful for emergency situations in remote areas without dedicated packet facilities."

Phil Karn (KA9Q), "MACA – A New Channel Access Method for Packet Radio" Proceedings of the 9th ARRL Computer Networking Conference, London, Ontario, Canada, 1990

Point of Contacts

E-mail: SteveG@icta.net

Chief Engineer:

John Bonnett KK6JRA / NCS820

Phone: (805) 534-9389 E-mail: KK6JRA@uuplus.net