
105

An OS Independent and Device-Independent Mobile Web Front
Panel for Radio Transceivers

Bruce Perens, Algoram
bruce@perens.com

Introduction
Algoram has produced a radio front
panel that runs on almost all popular
computer platforms, with only iOS
as the exception at this time. This
program is not ported from one
system to another, the exact same
code runs on every platform. It runs
well on smartphones. The radio
includes a WiFi access point and
uses this means to communicate
with the smartphone. Bluetooth can
also be used.

The computing resources required in
the radio to support this system are
very modest and run in inexpensive
microprocessors without virtual
memory support. The smartphone interface includes a waterfall bandscope and can support all manner
of graphical displays and controls. The smartphone user interface doesn't require much dexterity and
can be easily used by most people. Tablets of various sizes are also supported and provide additional
display area and ease-of-use.

This front panel is part of Algoram Katena, a 50-1000 MHz software-defined HT which can be
programmed to communicate using many different modulations, modes, and protocols. We've
previously refered to Katena as “Whitebox” or “HT of the Future.”

Katena is a front-panel-less HT which remains in the user's pocket or on a belt, and is controlled with a
smartphone, with the smartphone providing the audio input and output as well as all front-panel
functions. Currently this exists as a prototype larger than an HT, which will be made available in base
and mobile form factors first, and then will be further miniaturized to become a handheld device.

The key to this technology has been the use of emerging HTML5 APIs to run our software in the
device's web browser. There have been previous efforts that provided receiver interfaces, with
bandscopes, using some form of HTML or perhaps Java. Recently, browsers have gained standardized
APIs for two-way audio and video communications, and thus they make the microphone and camera
available to the program. They were already capable of providing all manner of 2-D displays, audio
output, and controls needed to operate a radio.

Illustration 1: A test of Algoram's waterfall bandscope using random data.
Image is copyrighted by the author and released under the same terms as this paper.

106

Revenge of the Clones
Computing hardware and operating systems are fragmentary, they aren't all the
same and they don't all run the same code, and this is in general a benefit to
society. Imagine if Operating Systems were like the
“clone army” in Star Wars episodes II and III. Just
as clone troopers would all be “identical-twin
brothers” who share the same DNA, Operating
Systems could all look the same and run the same
code. Wouldn't that be great?

No. When one clone trooper got sick, they'd
probably all get sick. And here's a real-world
example: because Tasmanian Devils became so
inbred that they are “clones” from an
immunological perspective, they have developed
a contagious cancer that is driving them to
extinction. Cancer isn't contagious in people
because we aren't clones and we each have
different immune systems.

Similarly, different software doesn't fall victim
to the same viruses and security bugs at the
same time, and thus a network of hetrogenous

systems (ones different from each other) is more likely to have some
portion continue to operate during an attack, while a network of
homogenous systems (all the same) is likely to have all of its nodes
fail.

Fifteen years ago, when the Microsoft Windows systems at the
largest global express delivery company were attacked by the Red
Flag virus, their entire global computer network went out of service
and their hundreds of thousands of employees had to operate on
phones and fax machines for a day, until of the Windows systems
could be brought down and disinfected. Only a few systems running
the BSD operating system maintained the company's web presence.

So, What Does This Have To Do With Ham Radio?
Hams operate the emergency services communication network of last resort. We are building more
computers into our systems because that's the way that technology is heading, and we are creating
digital networks that allow our computers to exchange data over the air, and thus make it possible for
them to exchange viruses and manifest security bugs over the air. Thus, in order for our systems to be
effective during emergencies, they must not all run the same software.

Illustration 3: A Tasmanian Devil
afflicted with contagious cancer.
Image by Menna Jones from a PLoS paper
under a Creative Commons Attribution
license, see https://commons.wikimedia.org
wiki/File:Tasmanian_Devil_Facial_Tumour
_Disease.png for details.

Illustration 2: A
cosplayer acting as the
Star Wars clone Jango
Fett.
This image was created by Sam
Howzit and is under Creative
Commons Attribution 2.0
license. The name and image of
Jango Fett are trademarked by
Disney and their use here is
intended to fall under the Fair
Use doctrine. Downloaded
from https://commons.
wikimedia.org/wiki/File:Jango
_Fett.jpg

Illustration 4: "The Scream" by Edward
Munch, has frequently been used to
illustrate frustration with computer
failures, although Munch did not live in
the Computer Age. Copyright expired.

107

The Heartbreak of Hetrogeny
So, we've established that having hetrogenous systems, which don't all run the same code, are
important for the security and continued operations of the world's computer networks, and are even
more important to the radio amateurs who operate the network of last resort. But there is also a great
cost to hetrogenous systems. Because they will not, in general, run the same code, we will often have
to build separate programs to perform the same task on each different flavor of system.

Thus, a native application for an operating system, one which directly uses the CPU and its instruction
set, the GUI, and the operating system services for that system, will be different from a native program
on another OS or even a different hardware device. Native programs for Microsoft Windows and
MacOS will in general look very different at the source-code level, and programs that look the same at
the source code level will have to be recompiled for differing instruction sets, for example those on the
the Intel CPUs common to desktops and the ARM CPUs common to smartphones.

So, we end up with a vast combinatorial problem. Even a company that can employ many
programmers will find it difficult to economically support all of the available hardware and operating
system combinations.

Software engineers have tried to solve this problem by making programs more portable, which means
giving them the capability to be used on more than one kind of system. There have been many different
approaches to solve this problem:

 We have Apple and Microsoft, who each would really prefer that everyone in the world run
their systems so that there'd only be one kind of OS to program for and portability would not be
an issue. But this brings us back to the “clone army” problem.

 We have portability layers like wxWidgets and Qt, which attempt to hide differences between
systems at the source-code level, at the cost of an increase in program size and resource use,
and the failure to include all native GUI and operating system facilities in its API.

 We have Java, which tries to hide the CPU, operating system, and GUI and run the same
programs everywhere. This hasn't worked out as well as the Java designers would have liked,
for example there is a different GUI on Android smartphones and desktops, even though both
run Java, and because of differences in Java implementations “run everywhere” tends to have
also meant “test every possible system”. Solving the performance issues of Java has taken the
development of just-in-time-compilers, which turn Java into native code. These are large and
consume their own resources.

 We have software-as-a-service, which runs the program on a server somewhere on the web, and
provides it to the user via a web browser interface. This has the benefit of removing the need
for users to administer servers and the programs that run on them, but it has tended to fail in a
disaster, as the server is in general far away and must be accessed via a high-speed Internet
connection. In a disaster, Internet access is likely to be interrupted.

Software-as-a-service can also have the effect of transmitting a service interruption far beyond the
physical boundaries of a natural disaster. Hurricane Sandy took many data centers down, effecting
software-as-a-service customers worldwide because not every service provider had, or could afford,
fail-over mechanisms outside of the disaster area, which spanned several U.S. States.

108

 We have computer languages, many different kinds, which in general hide the differences
between CPU instruction sets but not operating systems or GUIs. For example, the C language
is available on very many different CPUs, and once you have a C compiler, you can use it to
build the facilities of many other languages, for example Python and Java.

A New Hope
The web started out as a very simple way of displaying pages with links to other pages, but it didn't
stay that way for long. The needs of providing additional interactivity, mostly to support software-as-a-
service, inspired the implementation of Javascript (a different thing from Java) and the addition of
many new APIs, and this continues to the present day.

On the one hand, this means that web
programming is architecturally messier,
and more difficult, than if the whole
thing had been designed at the same
time. Web programming now requires
the use of at least three separate
computing languages, HTML,
JavaScript, and CSS, for the portion of a
program that runs in a web browser,
often a fourth language is used to
implement the server-side software, and
there can be even more languages
involved, for example SVG which is
used to define resolution-independent
vector images, and MathML to format
mathematical equations. There are also
dozens of APIs to learn, as shown in the
illustration. To handle all of these
facilities, web browsers have gotten
huge, and use substantial resources.

On the other hand, the web browsers that closely track the HTML5 standards process, Google's
Chrome, the Mozilla Foundation's Firefox, and Opera Software's eponymous browser, are now capable
of all operations that we would want from a radio control panel. Most importantly, they handle two-
way audio and video, 2-D graphics sufficient for radio controls and displays, and efficient network
communications. These three browsers run on very many systems, and all three will run the same
program. Each browser is itself built from a different code base, although some code is common to two
of the three. So, there is some protection from bugs effecting all three browsers, although bugs in the
user's program could be exploited on all three platforms.

The Party Pooper
Chrome, Firefox, and Opera aren't the only popular web browsers. There is Safari, which is available

Illustration 5: HTML5 and related APIs. This image was created by Sergey
Mavrody and is under the Creative Commons Attribution Share-Alike 3.0 Unported license.
See https://en.wikipedia.org/wiki/HTML5#/media/File:HTML5_APIs_and_related_
technologies_taxonomy_and_status.svg

109

in different versions on Mac OS X and iOS. Despite Apple's greater expense relative to other products
and a corps of users who are perhaps fanatically dedicated to Apple and its products, Apple hasn't kept
up and isn't capable of running all of the audio APIs necessary for a radio front panel without the
creation of an iOS-specific application to support those facilities. To make the situation worse, Apple
has a policy of handicapping competing browsers which it accepts for its App Store by insisting that
they run Apple's own web rendering software rather than the browser developer's usual software. This
means that Chrome on iOS is just as crippled by Apple's failure to keep up as Safari on iOS. This
unfortunate policy doesn't exist for Mac OS X: Chrome, Firefox, and Opera are fully functional on that
platform.

At this writing, it is not known at present if Apple will provide the necessary APIs on its upcoming iOS
9. It is expected that Apple will eventually provide them, but this could be years in the future.

Microsoft's Internet Explorer tends to have inconsistent or behind-the-times implementation of new
web standards, however Chrome, Opera, and Firefox all run well on Microsoft platforms.

So, What Platforms Can We Support With HTML5 Front Panels?
At present, our HTML5 radio front panel can run on these platforms. The exact same code base runs
on all of them:

 Microsoft Windows systems running Chrome, Firefox, or Opera.
 Mac OS X systems running Chrome, Firefox, or Opera.
 Android smartphones and tablets running Chrome, Firefox, or Opera.
 Linux systems running Chrome, Firefox, or Opera. This includes essentially all Linux

distributions, for example Ubuntu, Red Hat, Debian, and Centos, but does not include ucLinux,
which does not provide virtual memory. However, our server-side software runs on ucLinux.

 Chromebooks and ChromeOS.
 Kindle Fire HD 7, but only when you install Chrome using the sideload process rather than

Amazon's app store.

These probably work too, or can be made to work, because they support the necessary browsers. But
we've not tested them:

 Other Kindle tablets with non-e-paper displays and current OS software and the Fire phone, but
only when you install Chrome, Firefox, or Opera using the sideload process rather than
Amazon's app store.

 The BSD operating system running Chrome, Firefox, or Opera
 Firefox OS and the Firefox phone.
 Ubuntu's phone platform.

110

What Doesn't Work, Then?
This leaves us with iOS as the only hold-out among popular computing platforms!

And of course we could write an app for iOS, but that would be pandering to Apple's bad policies.
We'll wait for them to catch up with web APIs.

Can We Support Even More?
Set-top boxes and TV dongles, and the various runners-up in the smartphone and tablet market: for
example Microsoft's phone platform, Symbian, Blackberry, and WebOS might support, or might be
persuaded to run, a browser with the required APIs. Android APIs are supported by some set-top boxes
and TV dongles, and Android programs that are not directly available in the device's app store can
often be sideloaded onto the device. We did sideload Chrome onto the Kindle Fire. This circumvented
the artificial limitations of Amazon's app store, which declined to offer Chrome for the device in favor
of Amazon's less-functional Silk browser.

The Operating System
Our current hardware runs ucLiunux, a compact version of the Linux operating system that runs on
devices without virtual memory. We run it on an ARM Cortex M3 CPU within the SmartFusion II chip,
which contains our gate-array on the same die. Our CPU is a single-core 200 MHz processor, and can
yet support a significant server, WiFi, Bluetooth, Ethernet, IPV4, both USB master and slave, and
FLASH storage. So, we have a capable server that will fit in your pocket with the radio.

Our software is actually a form of software-as-a-service, but with the server in your pocket! Thus,
there aren't the disaster-fragility problems of the usual software-as-a-service implementations. Our
server remains up on battery power and communicating with local devices via WiFi and distant devices
via Amateur Radio, regardless of the state of infrastructure around it.

It is expected that later devices will eventually run the full Linux system on virtual memory hardware,
rather than ucLinux. The selection of Cortex M3 rather than a larger CPU is due to our use of
SmartFusion II, which provides a FLASH-based gate-array which is capable of using battery power
efficiently. The smilar Igloo II gate-array which does not provide a CPU costs as much as the
SmartFusion II, so we essentially get the CPU for free!

The Web Communications APIs
At first, WebRTC appeared to be a desirable means of communicating between a browser and a radio.
It's designed for audio and video telephony as well as data communications, and includes “NAT
traversal” which solves problems with calls to systems on home networks from the outside. It's
connected directly to the web audio and video APIs, and automatically scales the data compression and
codecs used to make the best use of the available bandwidth.

What WebRTC lacked was a small, Open Source, embedded library that could serve it to a browser
client. Our software is Open Source, and we in general prefer to use Open Source both for economic
and collaboration reasons and because we can fix its bugs if necessary. The only Open Source software

111

stack available to us used a very substantial portion of the Google Chrome browser code. That was
overcomplicated and would not fit in our device.

With that determined, we switched to Websocket, a much simpler web API for creating a data stream
between a browser and another program. On the browser side, Websocket was easy to program in
Javascript, requiring only a few lines of code to handle the connection.

On the server side, we made use of libwebsockets, a compact Open Source embedded library in the C
language. This worked, and fit well in our low-resource CPU running ucLinux. Unfortunately
libwebsockets was not as mature as we would have liked, and has required some debugging of its
internals in order for it to work correctly in our application. This work was contributed back to the
project. Since our company benefits from the work of thousands of Open Source programmers, it's
only fair for us to join in that work on existing programs like libwebsockets, as well as to contribute
our own new software.

The Web GUI APIs
The web GUI is built using the HTML5 Canvas object, and its 2-D drawing environment. This
provides a Javascript API for drawing and animating all sorts of 2-D displays, buttons, and knobs,
using an imaging model descended from Adobe's PostScript. Canvas also supports a 3-D API which
we have not made use of yet.

Input comes from the keyboard, mouse, or touchscreen, and multi-touch is used to change the
bandwidth of the waterfall display using a “pinch” gesture in which two fingers are used to stretch or
compress the display.

Where a keyboard is available, the space bar is
used for push-to-talk. On touchscreen devices we
do not use push-to-talk, but a separate transmit
and receive button. This works very well on
smartphones. It's awkward to hold down a screen
device in the way we are accustomed to holding a
push-to-talk button on an HT, especially when
using a smartphone. However, there is an input
for a push-to-talk switch on the radio, and we can
make a PTT switch available via a USB or
Bluetooth peripheral. We have programmed a
library to make use of USB and Bluetooth
human-interface devices, and Various USB dials
and pedals have been tested.

Web Audio
The Web Audio API is an interesting creature, providing a graph of many different audio processing
nodes that can be connected to each other, including compression, gain, frequency equalization, and
even a node that runs a Fast Fourier Transform. It includes a means of acquiring the system

Illustration 6: A test of web push-to-talk.
Image copyrighted by the author and released under the same terms as this
paper.

112

microphone and loudspeaker and connecting them into this graph. All of this is meant to connect
directly to WebRTC, which has its own nodes that work in the audio graph. Because we use
Websocket, which has no such nodes, we add to this graph two nodes which process arrays of audio
samples and network data in Javascript, passing the data between the web audio API and Websocket's
interface to the network. Fortunately, Javascript is well-enough optimized that this runs well even on
smartphones, using substantially less than the full CPU resources.

A complication of the web audio API is that it does not allow the user to select a sampling rate, but
imposes its own, and this rate differs between platforms! Thus, a simple interpolation was programmed
in Javascript, and is used for both audio input and output, while the audio sample rate used for network
communications is set by the program. This works sufficiently well and there is still lots of CPU left,
even on a smartphone.

Another complication is that Websocket does not have access to the same means of compression that
would be used with WebRTC. At present we solve this by simply sending and receiving 16-bit data at
8K samples-per-second, a bandwidth that works well on Bluetooth, WiFi, and internet connections. It
would be possible, although perhaps awkward, to program entire codecs in Javascript. There have been
several efforts to define and implement a subset of javascript with high efficiency, which would be
appropriate for codec programming.

Putting It All Together
Using all of these APIs, we have created a complete radio front panel as two programs: a client
program that runs in the browser, and is coded in Javascript, HTML, and CSS, and a server program
that runs in our radio device, coded in C++. The server program stores the client program on the radio,
and sends it to the browser when the browser connects to the radio.

It would be awkward if it was necessary to type in a URL to connect to the radio. Indeed, the various
controls of the browser aren't really necessary for our radio front panel, and our screen would be neater
if we could get rid of the URL bar and the browser menus, buttons, and tabs. Fortunately, we can!
There is an evolving standard for packaging web programs as Apps, which allows them to be started by
touching an icon like a conventional app, and to run in full-screen mode without any of the usual
browser controls visible, only the controls in our own program. Once packaged this way, web
programs become indistinguishable from apps. They can be installed from an app store, or can be sent
to a smartphone by our radio for direct installation.

Security
Obviously, we must not allow unauthorized individuals to control our transmitters using web
interfaces. Fortunately, we have the entire set of security facilities used for other web applications:
encrypted network connections over WiFi or Bluetooth, logins and passwords, etc. But this is just the
start...

Authenticating Using Logbook of the World Certificates
Inspired by a paper at the TAPR conference by Heikki Hannikainen OH7LZB, and by the work of

113

ARRL's Logbook of the World designers, we have implemented a means for our radio to authenticate
strangers on the internet as licensed radio amateurs who are allowed to control a transmitter.
Individuals who have been set up by ARRL to use Logbook of the World are each sent a file containing
a x.509 public-key encryption certificate. We have instructions on how to export these certificates from
LoTW and load them into a web browser. Once an Amateur has done this, the browser will
cryptographically authenticate itself to our radio, communicating the amateur's identity and callsign
securely.

Thus, an Amateur can make the Algoram Katena radio available as a public facility on the internet, to
be used by Amateurs from all countries, and can be assured that only licensed Amateurs will be
allowed to connect to the radio. Since the software gives us the Amateur's call sign, it would be
possible to implement a means to automatically determine what privileges an Amateur of a particular
nation and license class should be granted when operating a transmitter in another nation remotely, and
to disallow operation on unauthorized frequencies and modes.

In Summary
Obviously, these are features that have never existed in a walkie-talkie, and have only been partially
attempted on a few experimental base stations. So, this is going to be a whole new world for Amateur
Radio. The rest of our hardware and software design is equally innovative, and will be presented in

