
122

Design of a Practical Handheld Software Radio

Chris Testa, KD2BMH
Los Angeles, CA
testac@gmail.com

September 21, 2012

Abstract

We’ve stood on the precipice of the software ra-
dio revolution for many years. However, these
devices still only sit in expensive commercial and
military applications. State of the art radios use
power-hungry SRAM based FPGAs that demand
fast interconnects to host processors operating
under heavy loads. These devices lack the capa-
bility of low-power operation which barrs wide
scale deployment. A new architecture is pre-
sented for the software radio, using a Flash based
FPGA to enable true low power operation. Duty
cycling is possible since the FPGA, processor,
and radio front ends can all be shut off. An in-
tegrated hard ARM Cortex-M3 on the same die
as the FPGA allows for rapid and efficient com-
munication over an on chip AHB-Lite interface.
Linux runs on top of the ARM, enabling robust
networking tasks from a battery operated soft-
ware radio.

Keywords

software radio, low-power, embedded systems

1 Introduction

My fascination with radio started when I learned
that I grew up a few miles down the road from
Nikola Tesla’s old Wardenclyffe Laboratory, the
site that he planned to bring universal commu-
nication to the whole world with. It has come
to pass that the whole world communicates now
through radio. Everyone carries a Internet linked
smartphone. But sadly, Tesla’s lab lays shattered
and forgotten, just as the universal component to
the communication medium lays shattered and
forgotten.

On a particularly chilly night in New York,
I was explaining the repercussions of SOPA or
ACTA. “As long as there are wires in the In-
ternet, and people control those wires.... you’re
saying the Internet will be threatened by closed-
speech campaigns?” my father asked. “Exactly,”
and that’s when I realized that I wanted to build
a radio, to help us break free of all the wires.

I was in luck, and I discovered two interesting
facts that night as I researched how a cell phone
was made. First, I found Eric Blossom’s Explor-
ing GNU Radio manifesto. The possibilities of
software radio tantalized me since I had focused
on VHDL design at the University of Maryland. I
also learned that I could legally attempt to build
a software radio as a licensed Amateur Radio op-
erator. I scribbled down 3 main goals for my new
project that night:

• To build a software defined radio (SDR).

1

123

• The device should be an entry level Amateur
Radio. Gordon recommends a dual band
handheld to be your first radio, so small,
cheap, and low-power.

• It had to be open hardware & software, with
no restrictions on commercial use; the suc-
cess of projects like the Arduino and the
MakerBot vitally depend on their permissive
licensing models.

But little did I know how tall of an order I had
prescribed myself! There are no existing open
source low power software radios because they
are power hungry. For example, the USRP draws
around 10 Watts during normal operation[1], and
that’s not including the CPU that’s loaded at
100% as GNU Radio chugs through incoming
samples. I love my USRP, but strapping it on
my back with an Ultrabook and hefty batteries
just doesn’t classify as a handheld. I had to go
back to the drawing board.

And that’s when this project got legs of its
own. My best friend from University, Aaron
Schulman, was working on his PhD at Michigan
at the time. I told him my intentions to build a
handheld SDR, and to my surprise, his advisor
and peers had recently had a breakthrough on a
sub-watt SDR. Not only that, but when I told
them what I wanted to do with the technology,
they wanted to open source their work with me.

2 Properties of a Low-Power SDR

This section explains the key findings in Dutta
et al.[2] that makeup a low-power software radio.
First off, it is a superhet software radio, in that
a superheterodyne radio transceiver sits on one
side of the analog-to-digital conversion (ADC)
and digital-to-analog conversion (DAC), and on
the other side is the FPGA and processor.

There are three necessary pieces to a low-power
SDR: full radio duty cycling, unprecedented sys-
tem integration, and extensive built-in measure-
ment of power usage.

2.1 Full Radio Duty Cycling

Radio dominates system power budget in low-
power wireless deployments. In order to extend
the battery life of a radio transmitter, its trans-
mit chain must be capable of a full sleep mode
when not transmitting. The same goes for the re-
ceiver, but here the concept of duty cycling also
applies. The effectiveness of a radio’s duty cy-
cling depends most heavily on the radio startup
time. For a low-power software radio to exist, it
must offer full duty cycling of both the RF front
end, as well as the processor.

This is the reason that no current state of the
art SDRs like the HPSDR and USRP can be-
come low power. It’s because they use SRAM
based FPGAs, which make duty cycling impossi-
ble. At powerup, the configuration must be read
off of the nonvolatile storage and loaded into the
FPGA fabric. This causes a spike in current at
startup, and an increase in radio startup time.
Therefore, SRAM based FPGAs are not ideal for
duty cycling and cannot be used to make a low-
power receive chain.

Dutta et al. propose the use of a Flash based
FPGA to overcome the shortcomings of the
SRAM based FPGAs. For instance, Microsemi’s
SmartFusion FPGA family offers a Flash based
FPGA fabric. In this case, the configuration
is stored in nonvolatile memory directly on the
FPGA fabric, so there is no lengthy radio startup
time or rush of current. Short radio startup
time means effective duty cycling is possible, and
thus the SmartFusion’s FPGA is ideally suited to
make a low-power SDR receiver.

2.2 System Integration

The state of the art in software radios include
using high speed and wide busses for modular-
ity, but this increases both the size and cost; two
main issues with a portable, low-power radio. In
particular, the interconnect between FPGA and
processor is critical. SDRs like the HPSDR max-
imize the throughput on multi-gigabit ethernet
links, which demands a second computer for pro-

124

cessing.

In contrast, the SmartFusion includes a hard
ARM Cortex-M3 on the same die as the FPGA
fabric. The two parts communicate via an on
chip AHB-Lite interface. This allows the pro-
cessor and FPGA to pass data around quickly,
with low power, and without the need of a large
external bus, ultimately saving board space.

2.3 Power Measurement

As handheld radios become more and more com-
plicated, it’s becoming more and more difficult to
understand how the device is consuming scarce
power resources. This is why power measure-
ment is the final key component to a low power
software radio. By measuring and understanding
how power is used on the digital, radio fron tend,
radio synthesizer, and amplifier rails, a better un-
derstanding of how the device consumes power
becomes available. Since this device is a software
radio, new algorithms to lower the power even
more can be deployed as a software upgrade.

The SmartFusion is well suited for the power
measurement task, as it includes a full suite of
current measuring circuits. The recorded data
can be analyzed by both circuit and driver de-
signers to increase power efficiency.

3 Architecture

3.1 Integrated Circuits

Realizing a cheap prototype quickly drove me
to use the Emcraft SmartFusion System-On-
Module (SOM). The SOM integrates a SmartFu-
sion A2F500, containing both an ARM Cortex-
M3, 500K system gates; with an external 16
mbytes PSRAM, and 8 mbytes NOR Flash. This
mini-board runs the Linux 2.6 kernel with busy-
box, an embedded systems shell kit. It exposes 2
UARTs, 2 SPIs, 2 I2Cs, 32 GPIOs to the FPGA,
16 GPIOs to the Cortex-M3, and an Ethernet
MAC Physical Layer. All using a compact 80-
pin bus to communicate with the daughterboard.

Figure 1: The CMX991 is a full I/Q Transceiver
that operates from 100 MHz to 1GHz.

This device completely abstracted away the com-
plexities of design and fabrication of a 10-layer
mixed signal circuit board with BGA compo-
nents. Weighing in at 30mm×57mm, about the
size of two postage stamps and conveniently the
width of an iPhone, it helped drive innovation.
Oh, and there’s a full GCC toolchain available
for free.

The radio frontend, the CMX991 from CML
Microsystems, Ltd. is a full superheterodyne I/Q
Transceiver from 100MHz to 1GHz on a chip. It
was chosen for its coverage of the 2m and 70cm
bands. As shown in Figure 1, a receive mixer,
IF variable gain amplifier, IF Signal Level Indi-
cator (SLI); and a baseband I/Q demodulator
with differential outputs is included. A transmit
I/Q modulator, IF mixer, and image-reject-up-
converter come as well. It has up to 2MHz of
bandwidth.

The ADCs and DAC were chosen for their
low power. The I/Q receive signal is sampled
by the Analog Devices AD9288, a dual 8-bit,
40 MS/s ADC; though upto a 10-bit, 100 MS/s
pin-compatible chip is available. The I/Q trans-
mit signal is generated by the Maxim MAX5189,
a dual 8-bit, 40 MHz DAC; though a pin-
compatible 10-bit version is also available. Au-
tomatic gain control is adjusted from the FPGA
via sampling the CMX991’s SLI with a National
Semiconductor ADC081S101.

125

3.2 Synthesizers

Due to the superheterodyne nature of the device,
both radio frequency and intermediate frequency
synthesizers are required for operation. Again,
the ability to shutoff the synths, power up, and
lock in a short timeframe is critical in the appli-
cation of a low power radio.
For the radio frequency synthesizer, a wide-

band Analog Devices ADF4351 has been chosen,
the same synthesizer used in the URSP WBX
daughterboard. This is a very wideband synth,
operating from 35 MHz to the multi-gigahertz
range, and is more than enough to drive the
CMX991. It also includes a low-power mode
where it draws microamperes, and a built in lock-
detect. This enables the ADF4351 to be shut-
off when not transmitting or receiving, and then
quickly enabled and locked for stable radio oper-
ation.
The intermediate frequency synthesizer oper-

ates at 180 MHz, divide-by-2 and divide-by-4 cir-
cuitry allow for 90 MHz and 45 MHz intermedi-
ate frequencies, respectively. The CMX991’s SPI
bus controls power to this circuit, so it can be
shutdown during sleep times.

3.3 Power

The prototype device takes a 5V DC supply volt-
age and is rated to draw up to an amp during
transmit or receive. A 3.3V LDO regulates the
supply to the digital components. A ferrite bead
separates the digital from analog voltages, which
provides stability to the radio frontend and sensi-
tive ADC/DAC analog parts. Headers are avail-
able on the various voltage rails to try out switch-
ing regulators and LiPo charging circuits.

3.4 ARM-FPGA Interface

The efficiency of Dutta et al.’s design is most ap-
parent in how they configured the FPGA’s Ver-
ilog. Two main components drive this efficiency,
radio ctland fifo ctl, which can be seen in in Fig-
ure 2 along with the rest of the SmartFusion

Figure 2: Application of SmartFusion. Note that
the FPGA and ARM are on the same die.

stack.

The radio ctl block looks like a small mem-
ory block to the processor, but contains all of
the necessary bus-control logic to manipulate the
radio front end and synthesizers. For instance,
frequency can be changed by setting the desired
frequency in a block of memory. This write ini-
tiates an AHB-Lite transfer which triggers the
ADF4351’s SPI bus sequence to dial the syn-
thesizer to the correct frequency. Control data
can also be read from the radio, for instance, the
power status of the radio front end can be read
back in over the SPI bus and relayed to the pro-
cessor.

The fifo ctl looks like a character device, but
internally contains asynchronous transmit and
receive queues. It is the interface for shuttling
actual data from the radio, through the AHB-
Lite interface, to the processor, and vice versa.
Each item in the queue is a command and op-
tional packet. For instance, when a user space
application writes data to the radio driver, it is
packetized and enqueued in the fifo ctl transmit
queue. The most recently enqueued packet in
figure 2 is Tt+2. If the radio needs to be turned
on to send the data, fifo ctl issues the necessary
commands to the radio ctl component. When
the transmitter has stabilized, the packet is I/Q
modulated and sent through the DAC to the ra-

126

Figure 3: The transmit rig setup as a number
of dev boards hooked into power supplies. From
lower right clockwise the boards are, SmartFu-
sion SOM, CMX991, ADF4351, and MAX8351.

dio for transmit.

The fifo ctl really shines during receive, as the
processor doesn’t even need to be turned on un-
til a full packet has been received. Imagine the
radio is currently in sleep state. When the duty
cycle timer goes off, the radio receive chain is
powered up. The I/Q samples come off of the
DAC and into the FPGA, and the data is corre-
lated for an incoming signal. Lets say a sim-
ple magnitude-based AM-squelch has been in-
serted. If the squelch is triggered, then the in-
coming voice data is enqueued in the fifo ctl re-
ceive queue. Data on this queue causes an inter-
rupt in the processor, which wakes up the kernel
driver.

4 First AM Voice Contact

The first AM Voice transmit was sent from the
proof of concept on July 11, 2012 in the WIESEL
lab at the University of Utah. It was transmitted
on the 70cm band and received by a USRP. The
proof of concept can be seen in figure 3. The
reverse, transmit from USRP and received by the
device occurred a day later. This section will
describe the flow of that first transmit.

On reset the transmit queue is cleared on the
FPGA, which puts the entire transmit chain in
sleep mode. A user-space program running in-
side of the SOM’s Linux kernel packetizes the
raw amplitude data of a voice recording, and en-
queues it on the transmit queue in the FPGA.
When the queue becomes non-empty, the trans-
mit chain powers up from sleep state. The FPGA
now sets the correct frequency, and waits for the
transmit and intermediate frequency synthesizers
to lock.

When the local oscillators have locked, the
transmitter is turned on and the samples are fed
into the DAC from the FPGA. The DAC converts
the digital I/Q signals into analog, which is fed
into the radio front end. The front end mixes to
the IF, and then image-reject-up-converts to the
transmitting frequency. The signal feeds through
the transmit power amplifier, and is sent out on
the antenna.

5 Discussion

This paper presented the architecture of a hand-
held, superhet software radio. It has been argued
that there are three main components to a low
power SDR: the ability to fully sleep and duty
cycle, unparalleled system integration, and com-
plete power measurement.

Current popular SRAM based FPGAs are not
capable of duty cycling, and require a host pro-
cessor, therefore they are ill-suited for low power
designs. Flash based FPGAs are explored, which
enable a low-power SDR.

The ultimate goal of this project is to open
source the design, schematics, Verilog, and ker-
nel drivers, as well as to small-scale manufacture
the device as a kit. The deployment of low-power
SDRs will hopefully hold many advancements in
radio, including techniques to alleviate the spec-
trum crunch problem. One thing is for sure, Am-
atuer Radio Operators are uniquely positioned to
continue advancing the art and science of radio.

127

References

[1] GNU Radio - USRP General
FAQ. (2010, 3 12). Retrieved from
http://gnuradio.org/redmine/projects/gnuradio/wiki/UsrpFAQGen

[2] Dutta, P., Kuo, Y., Ledeczi, A., Schmid,
T., & Volgyesi, P. (2010). Putting the
software radio on a low-calorie diet.
Hotnets-IX Proceedings of the 9th
ACM SIGCOMM Workshop on Hot
Topics in Networks, Retrieved from
http://dl.acm.org/citation.cfm?id=1868467

