

Overview

- Should I Walk Out Now?
- What is an SDR?
- Primary Hardware Architectures for SDR
- Main Approaches to Implementation
- Choices in Embedded DSP
- Summary

SDR: Who Cares?

- This Talk is Aimed at Two Groups
- Experimenters
 - Write/Modify Code
 - Build Hardware
 - Explore and Apply Component-Level Technology
- Operators
 - De-Mystify SDR
 - Understand Difference Between DSP and SDR

SDR: What Is It?

- SDR: Software Defined Radio
- Software Implements the Modes
 - AM, FM, SSB, CW, Synchronous AM, ...
- Software Implements the Features
 - VOX, QSK, Equalizers, ...
- Software Enforces the Limits
 - Tx Frequency, Power, ...
- Software Allows Generalized Hardware

SDR: What Is It?

- SDR Does Not Mean PC-Based
- SDR Does Mean Digital Signal Processing
 - But DSP Does Not Mean SDR
 - Might Just be Audio Filters (FT1000, TS480, IC706)
- SDR Implies Ability to Change Software
 - We Expect Upgradability by the User
 - New Features/Modes by Means of Updates
 - Internet Distribution
 - Software/Firmware Distinction is a Red Herring

SDR Architectures

- Direct Digital Sampling
 - SDR-14, SDR-IQ, Perseus, QS1R, Mercury (Receivers)
 - Penelope (Transmitter)
 - ADAT-200A, Hermes/Apollo (Transceiver)
- Direct Conversion To Baseband (Audio)
 - Flex Products
 - SoftRock Series
- Superhet With Bandpass (Roofing) Filters
 - Elecraft K3, Ten Tec Orion, Yaesu FT5000, ...
 - DSP-10, Pic-A-Star
- All Possible with PC or "Embedded" DSP
 - Embedded Simply Means Contained Within the Product

SDR Architectures: Receiver

- Holy Grail is an ADC at the Antenna Jack
 - Convert to Digital As Soon as Possible
 - Needs Really Fast ADC and Blazingly Fast DSP
 - Anti-Aliasing Requires a Front End Filter
 - Blazingly Fast DSP in Software Defined Hardware (FPGA)
- Otherwise Signal Must Be Down Converted
 - Quadrature Oscillator/Mixer to Baseband
 - Traditional Front End to Low IF

SDR Architectures: Transmitter

- Conceptual Goal is a DAC at the Antenna Jack
 - Convert from Digital As Late as Possible
 - Needs Really Fast DAC and Blazingly Fast DSP
 - Reconstruction Filter Required
 - Blazingly Fast DSP Can be Done in Hardware (FPGA)
- Otherwise Signal Must Be Up Converted
 - Quadrature Oscillator/Mixer from Baseband
 - Traditional IF to Operating Frequency Signal Conversion

To PC or Not to PC

- PC-Based SDR Designs are Suitable for Fixed (and Sometimes Portable) Use
 - Sunlight Readable PC Screens are Rare
 - Mouse Somewhat Impractical for Mobile Operation
- PC-Based Radio is Sharing the PC's CPU and OS
 - Drivers and Upgrade Support
 - Latency
 - Block Processing vs Per-Sample Processing
 - Other Programs and Processes (DPC)
- Common Examples of PC-Based Designs
 - Flex, MicroTelecom, RF Space, SRL-LLC
 - OpenHPSDR

Embedded DSP

- Low Power (500 mW vs 50-200W for a PC)
- Low Cost
- Simple, Fast, Intended for Real Time Applications
 - No GUI-Based, Cycle-Stealing OS
- All the DSP's Power is Available for the SDR
 - A 75 MHz DSP Can Often Keep Up With a 2 GHz PC
 - Imagine What a 600 MHz DSP Can Do!
 - Is This "Less's Law"?
- Let's Take a Closer Look

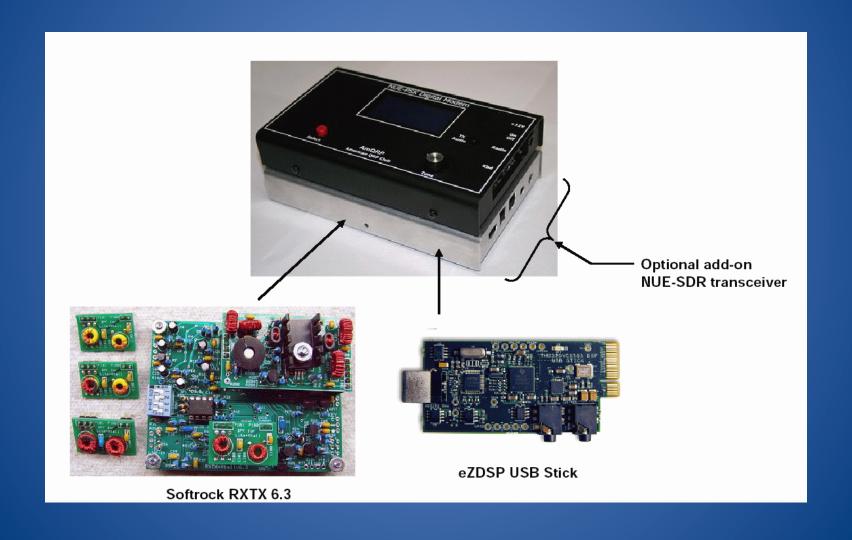
DSP Choices

- DSP Chips Are Available in a Wide Range of Computational Power and Speed
- Low End: 16 bit Fixed Point
 - Fixed Point Just Means the Math is Harder
 - dsPIC: 40 MIPs
 - Analog Devices Blackfin: 400 MIPs
 - TI TMS320VC5500 Series: 100-400 MIPs
- High End: 32 bit Floating Point
 - Analog Devices SHARC
 - TI TMS320VC674x

Low End DSP Possibilities

- Icom IC-7000 (Operators)
 - Analog Devices Blackfin: 400 MIPs
- SoftRock (Experimenters)
 - PC Based, so not Embedded DSP
 - But Wait, There's More...
- Midnight Design's NUE-SDR (Experimenters and Operators)
 - TI 16-bit "USB Stick" Eval Board: \$49
 - Uses SoftRock 6.3 RxTx!

NUE-SDR Pre-Prototype



NUE-PSK Digital Modem (upper left)

Spectrum display of SDR output
displays band activity

<u>Prototype Clocking, Tuning and HF Modem (lower right)</u>
SoftRock (left), eZDSP starter kit running NUE-SDR v0.5 software and Si570 Controller & Frequency Generator on front panel

NUE-SDR Prototype

Development Tools for Low End DSP

- dsPIC
 - MPLAB IDE (free download from Microchip)
 - C Compiler (free download from Microchip)
 - ICD-3 Debugger (about \$150)
- Blackfin
 - Analog Devices Tools: \$3,500 (oops...)

Development Tools for Low End

- TI TMS320VC55xx
 - TMDX5505EZDSP Eval Board: \$49
 - Includes USB Debugger/Loader
 - Includes Stereo Audio I/O
 - Embeddable in Projects (e.g., NUE-SDR)
 - TMDX5515EZDSP Eval Board: \$79
 - Higher Performance, More Features
 - Full Code Composer Tool Suite
 - Free Download
 - Fully Functional if Eval Board Attached
 - Otherwise \$1,995 and up

High End DSP Possibilities

- Suitable for High Performance Radios
 - Huge Dynamic Range
 - Fast: 1.2 Billion Floating Point Operations/Sec
 - Bill Gates, Steve Jobs nor Linus Torvalds get any of those cycles!
- Today's High Performance Transceivers Use
 32-Bit Floating Point DSP (or PCs)
 - But Not All are SDRs (e.g., Field Upgradeable, Software-Defined Features)

High End DSP Chips

- Analog Devices SHARC Series
- Used in (Operators):
 - Ten Tec Orion
 - ADAT-200A
- Expensive Development Tools (Experimenters)
 - \$3,500 SW
 - Emulator/Debugger...
 - Oops...

High End DSP Chips

- TI TMS320VC674x Series
 - Up to 1.2 Billion Floating Point Operations/Sec
 - Low Power (under 1 watt)
- Development Tools (Experimenters)
 - Free if Using \$99 Debugger
 - Cheap Enough for Hams!
 - \$1,995 if Using Higher End Debugger/Emulator

Yet Another Approach

- TI's OMAP (Experimenters)
- OMAP is a 300 MHz ARM Plus a 300 MHz DSP
 - Inexpensive
 - Low Power
 - Widely Used in Cell Phones!
- Latest Chips use 674x DSP Core
- ARM Can Run Linux for UI and Background
 - DSP Unencumbered by OS
- Uses Standard TI Toolchain or Linux

Beagleboard (Experimenters)

- Open Design based on OMAP 3530
- \$149 from Digikey
- Can be Embedded in Project
- Runs Linux, Gnome, Android, Symbian, QNX,
 Windows Embedded, ...
 - Can be Crippled Just Like a PC ☺
- http://beagleboard.org for details

Embedded DSP for SDR Summary

- SDR Can be PC or Non-PC Based
- SDR is Mainstream in Amateur Radio Today
- SDR Means DSP
 - But DSP Does Not Mean SDR
- SDR Is a Wonderful Learning Opportunity
 - An Experimenter's Paradise!

Embedded DSP Choices for SDR

THANK YOU!