Gerald Youngblood – K5SDR President

Software Defined Radios We've Been Busy...

Radios that just keep getting better.™

Moore's	Law k	(eeps	Making
PC Based	SDR	Bett	er

SDR-1000 Development System—

SDR-1000 Project Began

SDR-1000 Shipped

FLEX-5000 Shipped

FLEX-3000 Shipped

FLEX-1500 Shipped →

Processor ⋈	Transistor count ⋈	Date of introduction ⋈	Manufacturer ⋈	Process M
Intel 4004	2,300	1971	Intel	10 µm
Intel 8008	3,500	1972	Intel	10 µm
Intel 8080	4,500	1974	Intel	6 µm
Intel 8088	29,000	1979	Intel	3 µm
Intel 80286	134,000	1982	Intel	1.5 µm
Intel 80386	275,000	1985	Intel	1.5 µm
Intel 80486	1,180,000	1989	Intel	1 µm
Pentium	3,100,000	1993	Intel	0.8 µm
AMD K5	4,300,000	1996	AMD	0.5 µm
Pentium II	7,500,000	1997	Intel	0.35 µm
AMD K6	8,800,000	1997	AMD	0.35 µm
Pentium III	9,500,000	1999	Intel	0.25 µm
AMD K6-III	21,300,000	1999	AMD	0.25 µm
AMD K7	22,000,000	1999	AMD	0.25 µm
Pentium 4	42,000,000	2000	Intel	180 nm
Atom	47,000,000	2008	Intel	45 nm
Barton	54,300,000	2003	AMD	130 nm
AMD K8	105,900,000	2003	AMD	130 nm
Itanium 2	220,000,000	2003	Intel	130 nm
Cell	241,000,000	2006	Sony/IBM/Toshiba	90 nm
Core 2 Duo	291,000,000	2006	Intel	65 nm
AMD K10	463,000,000/758,000,000[1]	2007	AMD	65 nm
Itanium 2 with 9MB cache	592,000,000	2004	Intel	130 nm
Core i7 (Quad)	731,000,000	2008	Intel	45 nm
POWER6	789,000,000	2007	IBM	65 nm
Six-Core Opteron 2400	904,000,000	2009	AMD	45 nm
Six-Core Core i7	1,170,000,000	2010	Intel	32 nm
Dual-Core Itanium 2	1,700,000,000 ^[2]	2006	Intel	90 nm
Six-Core Xeon 7400	1,900,000,000	2008	Intel	45 nm
Quad-Core Itanium Tukwila	2,000,000,000 ^[3]	2010	Intel	65 nm
8-Core Xeon Nehalem-EX	2,300,000,000 ^[4]	2010	Intel	45 nm

New From FlexRadio...

Introducing the FLEX-1500

- 160-6m
- 48 kHz Panadapter
- >80 dB IMD DR3
- All Mode
- 5W PEP & CW
- o dBm Transverter IF
- 10 MHz Ref. Input
- USB Interface
- Only 1.2 Pounds
- 4" W x 6" D x 2" H

The FlexRadio Family

5W PEP Out

>90 db Dynamic Range Receiver 96 KHz Receive Bandwidth Built in Auto Tuner 100 Watts Output Only 7 Pounds!

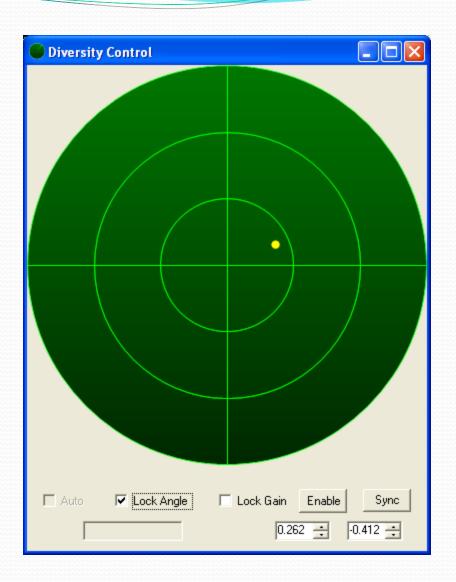
99 db Dynamic Range Receiver 192 KHz Receive Bandwidth Optional VHF/UHF Module Optional 2nd Receiver Optional Auto Tuner 100 Watts Output

FLEX-VU5k VHF/UHF Upgrade for FLEX-5000

- 2 m and 70 cm
- All Mode Operation
- Cross Band Full Duplex
- Satellite Modes B & J
- 6oW Output
- +17 dBm Option
- Reference Locked LOs
- Dedicated V & U BNCs

Introducing PowerSDR™ 2.0

PowerSDR™ 2.0 Features


- New User Interface Downloadable Skins
- Automated Wide Band Image Rejection
- Enhanced ALC Algorithms
- New Downward Expander Transmitter Gain Shaping
- Enhanced Noise Reduction and Notch Filtering
- Completely Revamped & Improved CW Keying
- Improved Transmit/Receive Turn Around Time
- Greatly Improved FLEX-3000 ATU Algorithms
- FLEX-1500 Support
- Integrated Software Installer

FLEX-5000 Beyond Diversity...

- Fully Synchronous Receivers
- Beam Steering
- Noise Notching
- Signal Notching
- Adaptive SNR Optimization
- In PowerSDR[™] 2.0 as Beta
- http://w9oy-sdr.blogspot.com

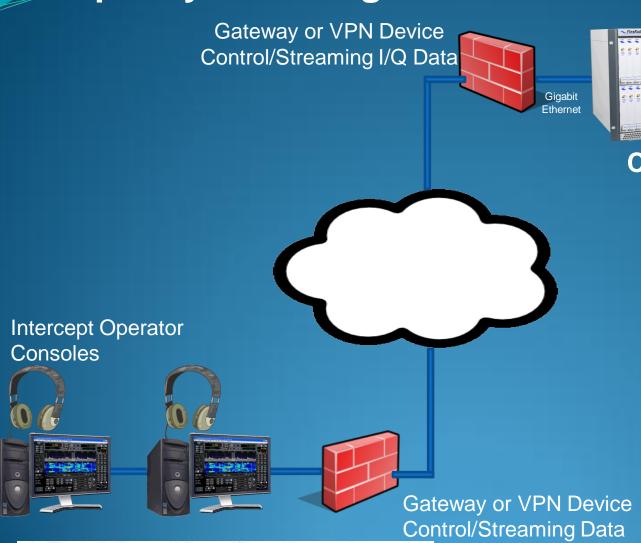
The Commercial Front...

CDRX-3200 32 Channel Synchronous Receiver

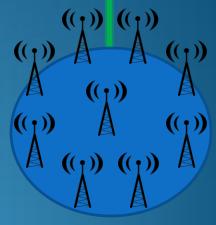
- 32 Fully Independent Receivers
- Patent Pending Technology
- Synchronous to GPS System
- 200 kHz Channels
- 100 kHz 100 MHz Tuning
- IMD DR3: >105 dB @ 100 Hz
- Phase Noise: < -150 dBc/Hz
- GigE Streaming I/Q Data
- 7U Chassis, 100W Total

CDRX in the Raw

CDRX-3200 In The Rack






CDRX-3200 Intercept Operator Example System Diagram

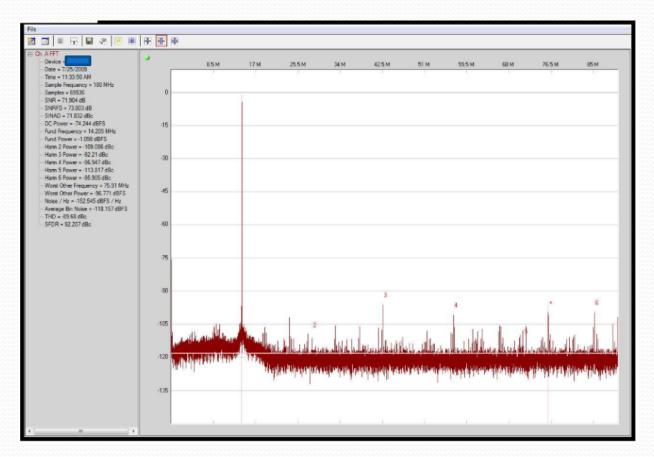
GPS

CDRX-3200

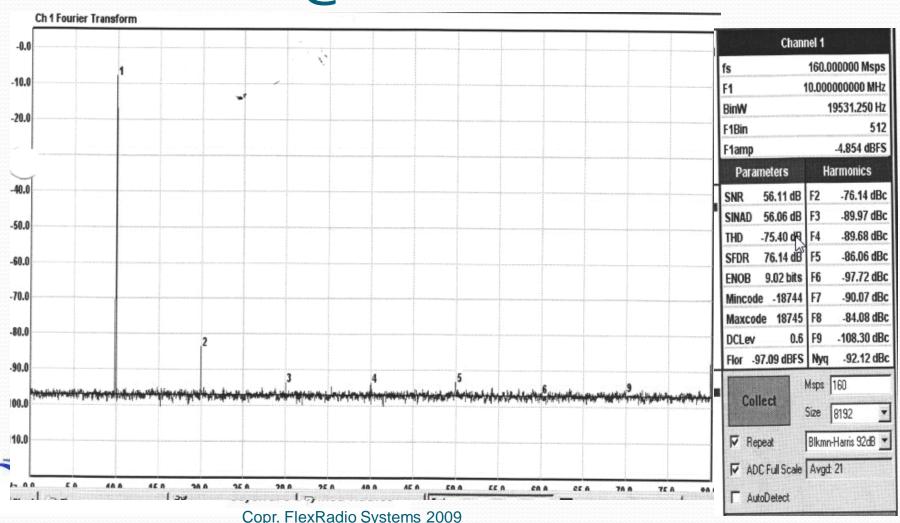
Antenna Array

SERX-16 Survey Receiver

- 18oMsps Direct Sampling Receiver
- 16 Streaming 250kHz Channels
- Polyphase Down Sampling DDCs
- DDCs Combine for Reconstruction
- Real-time FFT (256–8192 bins)
- DDC look-back up to 4.3 seconds
- >9odB Wideband SFDR
- Phase Noise: <-150 dBc/Hz
- RX Bands: HF & Low VHF
- 70MHz and 140MHz 25 MHz BW IF
- Optional full wideband I/Q stream
- PCI Express x4 Lanes (GigE Opt.)
- Virtex-5 SX95T FPGA



SERX-16 Survey Receiver



SERX: 92 dBc SFDR @ -1 dBFS 180 Msps

LTC6400-20 & 160 Msps LTC2209: 76 dB SFDR @ -5 dBFS

Gerald Youngblood – K5SDR President

Software Defined Radios The Software <u>Is</u> The Radio