
49

A Protocol for Multicast Weather Data Distribution Over AX.25

Nick Luther, K9NL

1655 South Westhaven Drive

Oshkosh, Wisconsin 54904

nluther@ieee.org

Abstract

A protocol is described for use on top of AX.25 in order to form multicast, push-architecture, regulatory

compliant, radio weather data links. This protocol is especially suited to disseminating NEXRAD

weather surveillance radar data over 1200 baud AFSK VHF radio links. Further, a larger scale system

for distributing weather data using various means, among them radio links using this protocol, is

discussed along with the current status of its implementation. Using the defined protocol over a radio

link along with other system components, it is possible to ingest NEXRAD data from fast, operational

data sources and to relay that data to severe weather spotter resources in a timely fashion, even when

those resources have no access to the Internet or other data network infrastructure.

Key Words

NEXRAD, AX.25, RDTP, NOAAPORT, SKYWARN

Introduction

In the United States many amateur radio hobbyists participate in the National Weather Service’s

SKYWARN
TM

 program. Nationwide, this program has nearly 280,000 trained severe weather spotters

[1]. While not all of these are amateur radio volunteers, it is evident that a large group of them in fact

are. When considering the future direction of amateur digital communications, technologies supporting

volunteer severe weather spotters should be seriously considered.

An architecture for a system which uses amateur packet radio as a physical link to disseminate real time

NEXRAD weather surveillance radar data, as well as other relevant products, in support of SKYWARN

operations was previously presented in [2]. Implementation challenges have since been resolved and

detailed design has been completed. A protocol is now presented for use above AX.25 to support this

data dissemination system. The protocol, called Radar data Datagram Transport Protocol over AX.25

(hereafter RDTP/AX.25), supports multicast or point-to-point topology, allows data to be pushed

asynchronously as it is received from upstream sources, and maintains two-way communication for

compliance with 47CFR97. Further, the status of this project is discussed with a focus on new

developments since the publication of [2].

50

Design Inputs

AFSK and FSK modems with typical data rates of 1200 and 9600 baud are readily available in amateur

equipment, especially when integrated into hardware Terminal Node Controllers (TNCs) or software

AX.25 protocol implementations. Making use of this equipment simplifies the constructions of an

RDTP/AX.25 station. However, the requirement that this protocol be used over AX.25 is introduced.

Further, the maximum frame length is constrained.

The RDTP/AX.25 protocol then must meet these requirements:

• Be implemented on top of AX.25

• Operate at frame sizes less than 256 bytes

• Viably relay at least two 5 kB messages received every five minutes

• Support multicast operation to multiple receivers

• Maintain two-way communications

• Be designed to simplify implementation on both Windows®
1
 and Linux®

2
 operating systems

The protocol should be able to handle various types of weather data, as long as the individual message

data lengths are reasonable. This should include radar and text data. The data flow is generally

unidirectional, with a clear upstream and downstream side to any link. RDTP should recognize a server

side, upstream with respect to data flow, and a client side, which is downstream with respect to data

flow. The server will likely be a fixed radio station, and the client could be a fixed or mobile station. In a

multicast situation, there could exist an arbitrarily large number of clients in a link.

Some additional discussion supporting these requirements is available in [2].

Protocol Overview

The previously stated requirements drive significant design decisions, which are discussed in this

section.

The requirement to operate on top of AX.25 is established, however, the functional capabilities of

AX.25 are not necessarily required, nor even desired. Thus the RDTP protocol is designed to make use

of only AX.25 Unnumbered Information (UI) frames. Every frame transmitted includes the transmitting

station call sign in the appropriate AX.25 field. This meets 47CFR97 requirements, but may generally be

ignored by receiving software. The recipient call sign in the AX.25 frame is always stated as ASCII

“RDTPC” for server-to-client frames and “RDTPS” for client-to-server frames. This convention

resolves certain issues identified during implementation. The only other AX.25 feature functionally used

by RDTP is the Frame Check Sequence (FCS). The current RDTP implementation assumes that the

AX.25 stack will have dropped any corrupted data, and thus all data ingested by the RDTP software may

be considered error-free. To increase compatibility with available AX.25 stacks, the AX.25 PID is

always set to text, though it would ideally be set to a unique identifier for this protocol. For reference,

the AX.25 protocol is specified in [3].

1 Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries.
2 Linux is the registered trademark of Linux Torvalds in the United States and other countries.

51

To realize maximum utility from low data rates, such as 1200 baud, compression is specified at the

RDTP frame level, and is also available at the weather data level. The bzip2 algorithm was chosen as its

freely available implantation, libbz2, was shown to perform very well in informal engineering

confidence testing and is easily integrated into an RDTP software package on multiple operating

systems. Additional compression details are presented in a later section of this paper. For more

information on bzip2, see [4].

With these fundamental design details explained the discussion may proceed to protocol semantics. To

organize the available data on the server side, the concept of a named data stream is defined. Now posit

there exists an RDTP server sourcing weather data from unknown upstream sources, and there further

exist one or more RDTP clients, and that all of these stations share the same physical link. In other

words, they are all tuned to the same frequency. The server organizes incoming data into logical data

streams. The clients all desire data product which are members of one or more of these data streams. At

the high level, the client server exchanges will follow this procedure:

• The client waits to be polled, as it shall not speak until spoken to. However, if an unspecified

dead air timer elapses, as in initial link establishment, it immediately contacts a known RDTP

server requesting one or more data streams.

• The server acknowledges and accepts or denies the client’s request for data. Other clients on the

channel hear the acknowledgement and realize that it is unnecessary to transmit their own

request, unless said clients desire to request additional data streams for which no

acknowledgement has yet been received.

• When new data becomes available from upstream, the server classifies this data into a data

stream, checks for an active request for that data stream, and if one is found then transmits the

data in a manner such that all clients sharing the same physical channel may receive it.

• After transmitting data from a data stream, the server initializes a timer, which once elapsed, will

purge the active request for any new data from that data stream. This will cause the channel to

shut down until another client request is received.

• To keep channel access organized for the next round of data stream requests, the server will poll

clients in an orderly manner. Clients will only speak after being spoken to, as previously stated,

and will transmit any pending data stream requests in response to the poll. The process then

repeats.

In practice, when data is not flowing, neither the client nor server will transmit. This allows for

multiplexed access to the physical channel, and more specifically allows someone else to use the

frequency. To establish a link, a client detects dead air and transmits its request. When the last client in a

group is taken off air, the server will eventually lose all active data stream requests, and will then stop

transmitting. This is the ideal behavior for operation in the amateur radio service, and is most polite to

all band users.

Detailed Protocol Specifications

The requirements and high-level design of the RDTP protocol have been discussed to the greatest extent

reasonable within the scope of this paper. The low level details of the protocol will now be presented.

52

Conventions

These conventions are followed in this section:

• All indices are zero-based.

• Bits are numbered by order, with the most significant bit assigned the highest order number, and

the least significant bit the lowest order number. The most significant bit is transmitted first. A

numerical value for a byte should be represented over the physical channel following this

convention.

• A string of bytes is numbered beginning with the first byte in the string, which is the first byte

transmitted. This same notion for strings is used for data structures of numbered bytes.

Call Signs

RDTP call sign fields are filled as shown in Table 1, except for a deviation in the RDTP Frame Layer

Header.

Table 1: RDTP Call Sign Field Format

Bytes Bits Description Value Notes

First Last

0 6 All Call sign ASCII text ASCII string, unused

bytes filled with 0x00.

Left (byte 0) justified.

7 7 7-4 Reserved 0 bits Always fill with

zeroes.

3-0 Station SSID 16-bit unsigned integer

SSID value.

Frame Layer

The RDTP Frame Layer exists directly on top of the AX.25 UI frame. It functionally replaces AX.25

connected mode framing with special framing designed for the RDTP application. The most important

function of this layer is to allow messages to be broken into frames and then reassembled. To support

this, a message sequence number and frame sequence number are defined. Each individual message is

numbered and broken into frames. Each frame within that message is then numbered sequentially. These

two numbers allow receiving software to group frames into their respective messages, and then to

reassemble them in order, even if they were transmitted out of order or repeated later.

Also notable is that this is the level of RDTP that supports data compression and forward error

correction. A compression code identifies the data as compressed or not compressed, and indicates the

compression algorithm used. When the compression code indicates that compression is in use, only the

data section of the frame is compressed, to exclude all of the headers. For forward error correction,

simple N+1 parity of the data section only is specified. Setting the N+1 parity flag indicates that a frame

is the parity frame for the message indicated by its message sequence number.

The RDTP Frame Layer specification is presented in Table 2.

53

Table 2: RDTP Frame Layer Header and Payload

Bytes Bits Description Value Notes

First Last

0 3 All Protocol identifier

sequence

Literal ASCII ‘R’ ‘D’

‘T’ ‘P’

4 4 All Protocol version code Literal 0x00 This field is intended

to ease protocol

version changes.

5 5 7 From call/SSID present

flag

1: From/Transmitting

station call sign present

0: From call sign not

present

6 N+1 parity data flag 1: This frame is N+1

parity data

0: This frame is not N+1

parity data (a normal

frame)

5-4 Reserved 0 Always fill with zeroes

3-0 From station SSID 4-bit unsigned integer

SSID value

Used only if byte 5, bit

7 is set

6 11 All From call sign without

SSID

Call sign as specified in

Table 1 without SSID

Used only if byte 5, bit

7 is set

N-5

6/12

N-5

6/12

All Message sequence

number

Increments per message

from 0x00 through

0xFF, then rolls around

back to 0x00.

N-4

7/13

N-4

7/13

All Frame sequence

number

Increments per frame

from 0x00

Reset at 0x00 for each

message

N-3

8/14

N-3

8/14

All Frames in message Total number of frames

in this message minus

one.

Subtracting one makes

use of the value 0x00

and slightly expands

the maximum data

length RDTP is

capable of handling

N-2

9/15

N-2

9/15

All Compression code 0: No compression

2: Bzip2

Use of libbz2 is

recommended.

Compression applies

only to the payload.

N-1

10/16

N-1

10/16

All Frame layer payload

length

The length in bytes of

the payload section of

this RDTP frame.

For example, 0x00

would indicate no data

section present, but

would likely never be

used.

54

Bytes Bits Description Value Notes

N N +

data

length

 Frame layer payload

(data section)

A segment of a sequence

of RDTP logical entities.

These segments will be

concatenated by the

receiver in the order of

frame sequence number,

lowest sequence number

first.

This is the content of

the RDTP message. It

must consist of RDTP

logical entity blocks.

Logical Entity Layer

The RDTP Frame Layer replaces certain AX.25 functionality to meet the requirements of this protocol.

With this layer specified, it is now possible to split and frame messages for radio transmission, so the

discussion can continue to the content of those messages. The RDTP Frame Layer’s payload is one or

more concatenated RDTP Logical Entity Blocks (LEB). The Logical Entity Blocks are the meaningful

content of a message. In this section, critical blocks will be discussed and specified one at a time.

Table 3 presents the specification for the Data LEB. This LEB is used to transmit new weather data from

a server to a client. The payload is the data message itself, in original format from its source or

compliant to the same specifications if keeping the original format is not possible.

Table 3: Data LEB

Bytes Bits Description Value Notes

First Last

0 0 All LEB ID Literal 0x00 Identifier for this type

of LEB

1 7 All Data stream name Free ASCII text, defined

at the implementation or

system level

System administrators

will specify data

stream names.

8 8 All Compression code 0: No compression

2: Bzip2

Use of libbz2 is

recommended.

Compression applies

only to the payload.

9 10 All Length of data 16-bit unsigned big-

endian integer indicating

the length of the data

payload in bytes.

11 N =

11 +

data

length

All Data payload This is the actual

weather data received

from the information

source.

As previously discussed, a server cannot transmit data unless a client requests the data stream and the

request is accepted. A client may send to a server a Data Request LEB to perform this function. This

LEB is specified in Table 4.

55

Table 4: Data Request LEB

Bytes Bits Description Value Notes

First Last

0 0 All LEB ID Literal 0x01 Identifier for this type

of LEB

1 7 All Server call sign RDTP formatted call

sign of the server which

the data stream(s) are

being requested from

The AX.25 address

fields are not used due

to implementation

complications.

8 8 All Number of data stream

names

Length of the array of

data stream names in the

payload

9 9 + 7N All Data stream names Array of seven-byte data

stream names. Each is

left justified and right-

filled with 0x00 bytes as

necessary.

This is a simple C

array.

A server may accept and acknowledge or deny a Data Request LEB received from a client. The Request

Ack LEB and Request Denied LEB are used for this purpose, respectively. They are defined in Table 5

and Table 6.

Table 5: Request Ack LEB

Bytes Bits Description Value Notes

First Last

0 0 All LEB ID Literal 0x07 Identifier for this type

of LEB

1 7 All Call sign of client

being acknowledged

RDTP formatted call

sign

8 8 All Number of data stream

names

Length of the array of

data stream names in the

payload

9 9 + 7N All Requested data stream

names being

acknowledged

Array of seven-byte data

stream names. Each is

left justified and right-

filled with 0x00 bytes as

necessary.

This is a simple C

array.

Table 6: Request Denied LEB

Bytes Bits Description Value Notes

First Last

0 0 All LEB ID Literal 0x0C Identifier for this type

of LEB

1 7 All Call sign of client

being denied

RDTP formatted call

sign

56

Bytes Bits Description Value Notes

8 8 All Number of data stream

names

Length of the array of

data stream names in the

payload

9 9 + 7N All Requested data stream

names being denied

Array of seven-byte data

stream names. Each is

left justified and right-

filled with 0x00 bytes as

necessary.

This is a simple C

array.

It has been previously stated that RDTP clients shall not speak unless spoken to, unless an exception

applies. In normal operation, polling is required. A Poll LEB is defined for an RDTP server to poll

clients. Clients shall only respond when a Poll LEB is received giving the specific client permission to

transmit. The Poll LEB is specified in Table 7.

Table 7: Poll LEB

Bytes Bits Description Value Notes

First Last

0 0 All LEB ID Literal 0x06 Identifier for this type

of LEB

1 1 7-4 Poll type 0: Level poll

1: Call sign poll

2: Wide open poll

Any client may

respond to a wide-open

poll or level 0 poll.

Level and call sign poll

discussions are located

with their respective

data fields.

3-0 Level Unsigned 4-bit integer 0

for call sign or wide-

open polls. Otherwise,

an unsigned 4-bit integer

level for a level poll.

Only clients with this

access level or higher

may respond.

In practice, multiple

level polls may be

used, with the server

stepping down from 15

to 0, likely skipping

many steps at a time.

2 8 All Call sign being polled Call sign poll: RDTP

formatted call sign

Other polls: This field

does not exist, and the

LEB will only be two

bytes long.

A call sign poll is used

to poll a specific client.

This functionality is

useful to isolate clients

that have been heard

recently and prevent

interference.

The Poll LEB introduces the concept of an access level. Certain systems may have multiple clients of

different priorities. An example would be a system with a client station at an Emergency Operations

Center, a station at another communications facility, one or more mobile stations for severe weather

57

spotters, and one or more stations operated by general interest amateur radio hobbyists that provide little

or no operational benefit. The access level feature allows the requests of these stations to be prioritized.

Ideally, each client would be properly programmed with its access level, assigned by a system

administrator. In practice, many erroneous configurations are anticipated, so a special LEB, called the

Access Level Is LEB, is defined to advise clients of their access level. A client must comply with the

assigned access level if it is capable of responding to level polls. This LEB is specified in Table 8.

Table 8: Access Level Is LEB

Bytes Bits Description Value Notes

First Last

0 0 All LEB ID Literal 0x09 Identifier for this type

of LEB

1 7 All Client call sign RDTP formatted call

sign

8 8 7-4 Reserved 0 Always fill with

zeroes. This is a 4-bit

unsigned integer.

3-0 Access level 4-bit access level of the

client being addressed.

Presentation of additional LEB specifications is beyond the scope of this paper. The LEB specifications

presented herein establish the minimum functionality for an operational system. Additional LEB types

are specified in a draft RDTP specification available at [5]. Readers are cautioned that this is a draft

specification and will be revised in the future.

System Integration and Testing

The RDTP protocol was designed for integration into a system for ingesting weather data and

distributing it to users who can realize benefits from that data. As such, some discussion of an integrated

system is appropriate for this paper. With much assistance, the author has established a weather data

distribution system [6] that is capable of:

• Ingesting real-time NEXRAD, GOES, text, and other data from the U.S. National Weather

Service’s NOAAPort distribution network. Fore more information on NOAAPort, see [7].

• Relaying that data over connections on top of TCP/IP or AX.25 (the subject of this paper).

• Building relay networks which may have multiple upstream data sources for redundancy

• Processing that data and presenting it in a meaningful way, displaying it to end users in a

Graphical User Interface.

• Performing various other useful tasks such as: archiving received data, automatically generating

mobile phone text message and other alerts from received National Weather Service statements,

and driving Internet web sites with real time weather data.

RDTP has been used intermittently in this weather data distribution system for many years. Users have

provided feedback that RDTP performance has been excellent. With reasonable processing, it has been

found that a frame of NEXRAD data can be ingested from NOAAPort, stripped to the quarter of the

frame which is of interest, relayed via a 1200 baud RDTP link, and processed all before that same frame

58

of NEXRAD data is available on Internet web sites. As more Internet weather sources are developed and

the current sources advance this statement will likely no longer be true, but it has been informally tested

and found to be true as recent as two years prior to the writing of this paper. More information is

available in [2].

Project Status and Future Work

The RDTP protocol is one small part of an ongoing project to ingest, distribute, and process weather

data in real time, with special interest to NEXRAD data. The author and colleagues originally referred to

this project simply as the “Radar Project,” but it has since outgrown that term. As previously discussed,

a weather data distribution system has been established which is capable of ingesting many different

types of weather data and relaying those data through complex networks consisting of Internet and

AX.25 links to end users. To ease implementation, all of the software tools that compose this network

are available for both the Windows® and Linux® operating systems. Indeed, this is a stated goal for the

RDTP design. To the end user, a simply graphical application handles connections to Internet and

AX.25 data sources and automates data processing. Deployment of this system to end users is nontrivial,

it is also not very difficult.

As of this writing, two NOAAPort satellite receive sites are in operation and are redundantly linked via

the Internet through a backbone node. Additional fan-out Internet distribution nodes are available to

remove loading from the backbone. An RDTP server is operated in the author’s hometown every

summer during critical time periods, where excellent system performance has been observed.

Most relevant to this paper, future work on this project will further define the RDTP protocol and add

useful features. Many additional LEBs have been defined for anticipated features but resources have not

yet become available to implement and experiment with those envisioned features. Among the highest

priority desired RDTP features is a more advanced forward error correction scheme, such as Reed

Solomon coding. Additional work will focus on weather data processing software to expand the types of

data capable of being processed beyond simple text, radar, and satellite data into graphical depiction of

model output, radiosonde observations, additional types of radar and satellite data, and any other data

types of interest. Further, future work will yield additional features for various components of the

system to perform useful tasks. Severe weather alerting has been identified as a specific area where

additional features would be valuable.

Most importantly it must be stated that all of the core development on this project has been completed,

and that a much larger, more reliable weather data distribution system may be created without any

further development work. The future work of the highest priority is recruiting new volunteers to

implement NOAAPort satellite receive sites and RDTP servers to grow the network infrastructure. This

provides substantial benefits to the project, notably including a large body of troubleshooting resources

for future development, and increasing morale and providing greater value to volunteer software

developers.

Acknowledgements

The author would like to extend special gratitude to Aaron Heise, KB9QWC, for his extensive

contributions over the life of this project. These contributions include, among other things, assistance

59

developing the specification of the RDTP protocol, development of software tools for integration into

the larger scale weather data distribution system, troubleshooting of every weather software tool the

author has developed, and in general providing extensive engineering insight concerning all aspects of

this project.

The author would also like to thank Stephen Williams, KB9RLF, and Gerry Parks, N9OEW for their

dedicated contributions of equipment and time to the mission of building a weather data distribution

system and also for substantial software troubleshooting assistance, including especially the author’s

RDTP implementation software package.

Conclusions

The RDTP protocol and other system components developed by the author and colleagues present a

complete weather data delivery solution for severe weather spotters and other weather enthusiasts. This

solution overcomes the limits of the reach of the Internet and may be implemented at minimal cost.

Indeed, a network already exists implementing the concepts discussed. As the software tools in use

support redundant operation, the network reliability will increase as new volunteers establish and link

new infrastructure. Therefore, interested parties are strongly encouraged to follow references in this

paper and contact the author for further discussion. With network growth and continued development

effort a private, volunteer-operated weather distribution network is possible which will rival not only

gratis but also costly commercial solutions that are currently available. This is the ultimate goal and

future vision of the author’s long-standing project to develop weather data distribution tools.

A GPL-licensed implementation of the RDTP/AX.25 protocol is available from the author.

References

[1] NOAA: National Weather Service, Office of Climate, Water, and Weather Services, “What is

SKYWARN?,” National Weather Service web site, Available http://www.weather.gov/skywarn/,

Accessed 28/Jul./2008.

[2] N. Luther, “Disseminating NEXRAD Data via Packet,” QST, vol. 88 (no. 9), p. 81, Sep. 2004.

[3] W.A. Beech, D.E. Nielsen, and J. Taylor, “AX.25 Link Access Protocol for Amateur Packet Radio,”

Tucson Amateur Packet Radio Corporation web site, version 2.2, Jul. 1998, Available

http://www.tapr.org/pdf/AX25.2.2.pdf, Accessed 29/Jul./2008.

[4] J. Seward, bzip2 web site, see http://www.bzip.org/.

[5] N. Luther and A. Heise, “RDTP/AX.25 Protocol Specification,” DRAFT version 0.3, released Apr.

2006, Available from Winnebago County, Wisconsin ARES®
3
/RACES web site [online], follow

link from http://www.ecwec.org/noaaport.shtml.

[6] N. Luther, “NOAAPort Dissemination Network,” Winnebago County, Wisconsin ARES®/RACES

web site, Available http://www.ecwec.org/noaaport.shtml.

[7] NOAA: National Weather Service, Office of Operational Systems, “NOAAPort User’s Page,”

National Weather Service web site, Available http://www.weather.gov/noaaport/html/noaaport.shtm

© 2008 Nicholas Luther

3 ARES is a registered trademark and a program of the American Radio Relay League, Incorporated.

