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The Nordic nRF2401 Single Chip Data Transceiver: High Speed, Short Range Data 

Communication At An Extremely Low Cost 
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Department of Computer and Information Sciences 
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1. Introduction 
 

 The Nordic nRF2401 is a single chip data transceiver that works in the 2.4 GHz ISM band.  It 
provides data speeds of up to 1 Mbit/sec.  The frequency can be set in software anywhere from 2400 
MHz to 2524 MHz.  So, for example, it is possible to place the device at 2414 MHz where the ARRL 
band plan has allocated a channel for high speed data communication.  The chip is available in single 
quantities for $3.501 and can also be purchased as an easy to interface module (including antenna) for 
$22.2   
 
 My interest in this transceiver stems from a desire to create a “virtual” serial cable.  I have a 
number of radios in various automobiles that are all programmable via their serial ports.  Using a PC and 
software to program memory channels and configuration information in these radio is vastly easier than 
entering the data via the radio’s front panel.  However, programming with a PC means that I either have 
to bring my radio in the house to where the PC is or I have to take a laptop PC to the car where the radio 
is.  As a result, I almost never update the programming of any of these radios.  If it were possible to 
create a wireless link that would act just like a serial cable between my computer’s USB port and the 
radio’s serial port, editing the radio’s frequency and configuration would be a snap.  The range involved 
would be quite short… perhaps as little as 30 feet, so a low power solution like the Nordic nRF2401 
looks as if it might be just the thing for this job.   
 
 At this writing, this project is not complete.  I do have data flowing back and forth between two 
serial ports on my computer at 9600 baud using a pair of Nordic chips, but a number of issues still need 
to be resolved.  The purpose of this paper is to provide a simple guide to using the nRF2401 and to 
provide some sample programming code to show how to configure and use the device.   
 

2. Hardware Configuration 
 

 To simplify experimentation, I purchased 2 WRL-00151 transceiver modules (also known as 
TRW-24G) from Spark Fun electronics.  These modules require 3 volts to operate (drawing a maximum 
of 18 ma) and have an integrated antenna.  The only external connections that are required (other than 
power) are five control lines that are connected to a microcontroller.  The microcontroller clocks data in 
and out of the transceiver using a synchronous serial data transmission protocol.  Figure 1 shows one of 
the modules mounted on a piece of perfboard with a 16F628A PIC microcontroller, a MAX232 serial 
driver chip (to interface with the PC serial port) and two voltage regulators (an LM317 to provide 3 volts 
for the transceiver and the PIC and a 78L05 to provide 5 volts for the MAX232).  The two jumpers on 
the board allow me to switch the serial connector from DCE to DTE and vice versa so I can move the 
unit between a PC and a radio’s serial port without using a null modem adapter.  I run the system from a  

                                                 
1 See www.semiconductorstore.com/pages/asp/item.asp?ItemNumber=NRF2401AG-REEL 
2 See www.sparkfun.com/commerce/product_info.php?products_id=151 



 
Figure 1 

 
9 volt battery.  I created to of these units for initial experimentation transmitting data between two serial 
ports running on the same computer.   
 
 The connections between the transceiver and the microcontroller consist of five lines.  Two of 
the lines (CS and CE) determine the mode that the transceiver is in.  These are as follows: 
 
       Mode  CE  CS 
 
  Active (RF on) high  low 
  Configuration  low  high 
  Stand by (RF off) low  low 
 
 Another line, labeled DR1, allows the transceiver to tell the microcontroller when data has been 
received and is ready to be clocked out of the radio.  I connected this line to the external interrupt line of 
the 16F628A so that I would have the option of using this interrupt to trigger the processing of received 
data.  Two other lines (clock and data) are used to communicate received or transmitted data from the 
transceiver to the microcontroller.  The clock is always controlled by the microcontroller, thus it is 
always set as an output.  The data line must be set as an input when data is being received and an output 
when data is being transmitted.   
 
 I connected all five lines to PORTB of the 16F628A.  The pin assignments are as follows: 
 
           Port B 
  Pin I/O Description 
 
  0 In DR1: This is the external interrupt on this PIC.   
  1 In RXD: Receives data from PC serial port (connects to PIC USART.) 
  2 Out TXD: Sends data to PC serial port (connects to PIC USART.) 
  3 Out CE:   Sets transceiver mode 
  4 --- data: Sends/Receives data to/from transceiver.   
  5 Out clock: Clocks data to/from transceiver. 
  6 Out CS: Sets transceiver mode 
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When the PIC is sending data to the transceiver the value in the TRISB registers should be: 0b00000011.  
When it’s receiving data from the transceiver the value should be: 0b00010011. 
 
 

3. Shockburst Mode 
 

The nRF2401 is designed to transmit data at either 250 kbits/sec or 1 Mbit/sec.  The data rate is 
selected during the transceiver configuration process (see below).  However, performance is supposed to 
improve by 10 dB when using the lower data rate so I decided to begin my experimentation at the lower 
speed.  The transceiver has two modes of operation: “Direct” and “Shockburst” (where do they come up 
with these names?!).  In direct mode you must feed the data to the transceiver at the same rate it will be 
transmitted over the air (that is, either 250 kbits/sec or 1 Mbit/sec).  Any error checking that you might 
want to have done is your responsibility.  You also must take care of adding any flags or other preamble 
bytes that you might want to employ.  Using direct mode, for example, it should be possible to send 
standard AX.25 packets over this link.  You could think of the device as being similar to a Bell 202 
modem chip where the chip takes care of transmitting the data, but you are responsible for everything 
else including timing the bits and constructing the frames.   

 
Shockburst mode causes the transceiver to take responsibility for many of these details itself.  To 

send data, for example, you clock the data into the chip at whatever speed you want (within limits) and 
the chip gathers the data into packets and calculates a 1 or 2 byte CRC and appends it to the end.  It also 
generates a “preamble” which can be thought of as the equivalent of “flags” used in AX.25.   Data can 
be sent in 1 to approximately 29 byte packets.  On the receive side the transceiver checks the CRC to 
ensure that the data was received without error, checks the address to see if the data is intended for this 
station, and then signals the microcontroller that data has been received and is ready for processing.  
Nordic claims that a key advantage of the “shockburst” mode is that the RF section of the transceiver 
can be powered down while processing of the data is being done, thereby consuming relatively little 
power.  However, the advantages that I found most appealing were its ability to construct/error check the 
packets and send them at a data rate that was independent of the rate that the data was arriving at the 
chip.  As a result, I have thus far limited my experimentation with the device to shockburst mode. 

 
One other interesting feature of the nRF2401 is that it is capable of receiving on two separate 

channels at the same time through a single antenna (the second channel is 8 MHz higher than the first).  
The data from the second receiver is clocked into the microcontroller via a separate pair of data/clock 
lines.  As yet, I have not had an opportunity to experiment with this mode.   

 
4. Configuring the Transceiver 
 
When the transceiver is first powered up it must be configured before data can be either sent or 

received.  In shockburst mode with one receiver, it is necessary to send 14 bytes to configure the device.   
 

bit  7 ______bit 0 bit 7_____bit 0    _bit 7___bit 0    bit 7____bit 0               bit 7______bit 0 
|   Byte 13    |        |  Byte 12       |     |    Byte 11      |   |  Byte 10      | . . . .      |      Byte 0          | 
|                   |         |                     |     |                       |   |                    |              |                     _    |  
 
The data is transmitted left to right.  That is, the most significant byte (Byte 14) is sent first and 

within this byte the most significant bit (bit 7) is sent first.  Byte 0, bit 0 is sent last.  Byte 0, bit 0 
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determines whether the device is in transmit or receive mode (it is not full duplex).  Thus you must 
reconfigure the device every time you switch between sending and receiving.  According to the Nordic 
documentation, it is not necessary to rewrite the entire configuration to do this.  However many bits you 
send while in configuration mode is the number that will be written into the configuration registers… the 
other bits and the other registers will be unchanged.  Thus you should be able to put the device into 
configure mode and then send a single bit to switch between transmit and receive.  As yet I have not had 
any success doing this.  So far I’ve been rewriting the first 14 bytes of the configuration each time.  
However, because I’m writing data from the microcontroller to the transceiver at a very high speed, it 
doesn’t take long to do this. 

 
The configuration bits are documented in detail in the Nordic datasheet.  Here is an overview of 

what each byte does: 
 
Byte 0:   Bit 0 controls transmit/receive, the other 7 bits select the operating frequency. 
Byte 1:   Bits 0 and 1 set the output power, bits 2-4 specify the frequency of the crystal attached to 

the transceiver (leave it at 16 MHz), bit 5 specifies the data rate,  bit 6 specifies whether it 
will be used in direct or shockburst mode, and bit 7 enables dual channel receive 

Byte 2: Bit 0 turns CRC checking on or off, bit 1 specifies an 8 bit or 16 bit CRC (leave it on 16),  
the other 6 bits specify how many bits will be used for the address of the transceiver (in 
shockburst mode). 

Bytes 3-7: Contains the address of the transceiver for the first receive channel 
Bytes 8-12: Contains the address of the transceiver for the second receive channel 
Byte 13:  Specifies the length of the data blocks being received (just the payload, not including the 

  address, CRC, etc.) for the first receiver 
Byte 14:  Specifies the length of the data blocks being received (just the payload, not including the 

address, CRC, etc.) for the second receiver (you need not send this byte if you are only 
using one receiver 

 
I set the operating frequency to 2402 MHz and the power output to 0 dBm (that’s 1 mw… the 

maximum possible).  I used the slower data transmission speed, selected shockburst mode and disabled 
the second receiver.  I specified only 8 address bits (the minimum) and a two byte CRC.  The folks at 
Spark Fun have found a lot of errors slipped through when using the one byte CRC.  This should not be 
too surprising given that there is a 1 in 256 chance of getting the “right” value even if the CRC was 
randomly chosen.   

 
Testing at Spark Fun found some interesting results related to the length of the data payload in 

each packet.  They tested payloads that were 4 bytes long (making a 7 byte packet) and payloads that 
were 29 bytes long (making a 32 byte packet).  The tests were performed with the two transceivers only 
4 inches from each other so signal strength should not have been an issue.  What they found was that 
when they used 29 byte payloads, approximately 40% were lost (CRC did not check).  When they used 4 
byte payloads, only 10% were lost.  Both of these values are consistent with a failure rate of 1.5% for 
each byte in the packet.  If I apply that figure to a 1 byte payload (making a 4 byte packet with the 
address and CRC) I should get about a 6% failure rate.  In fact when I tried this experiment the failure 
rate was much lower than this…literally hundreds and hundreds of characters were transmitted without 
any errors.  It seemed to me that there must be something else at work here besides a constant 
probability of error for each byte.  As a result, it seemed to me that my experiments were likely to be 
much more successful initially if I used a one byte payload.  A couple of other advantages of this were 
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that since all payloads must be a fixed length, if I used a one byte payload I wouldn’t have to worry 
about padding payloads where there were only a fraction of the total needed bytes available.  In addition
when people usually experience a serial data link they expect to have each character transmitted as they 
type it, so a single byte payload would more closely conform to user’s expectations. 

 
Here is the C code for the function that sets up the configuration of the chip: 
 

set_tris_b(0b00000011);     // sets the TRIS register.  The lines are connected to clock,  
         // data, CE, CS, and DR1 must all be outputs 
output_low(CE);   
output_high(CS);    // puts the device in configuration mode 
for (i = 0; i<14; i++){   // for each of the 13 configuration bytes 
 for (j=0; j<8; j++){   // for each of the bits in the byte 
  output_low(data);  // if configuration bit is a 1 set RXdata high, else low 
  if (conf[i] & 0b10000000)  

output_high(data);   
  output_high(clock);  // we need to raise and lower the clock line in order to send the data
  delay_cycles(1); //  The PIC is running at 10 MHz.  Without a delay here we’d be  
  output_low(clock); //  sending the data too fast 
  conf[i] = conf[i]<<1;   //  Move to next bit 
 } 
} 
output_low(CS);     //  This locks the configuration data into the transceiver’s registers 
output_high(CE);     //  Make the transceiver active (turn on the RF section) 
 

The idea here is that the leftmost bit of the most significant byte is sent first.  It is stripped off by 
the line of code:  if (conf[i] & 0b10000000)  output_high(data);  Then all the bits are shifted to the left one 
place (conf[i] = conf[i]<<1;  ) so that the next bit can be sent. 

 
One note…. You may find it odd that the following code was used: 
 

  output_low(data);    
  if (conf[i] & 0b10000000)  output_high(data);   
  

Instead of: 
 

if (conf[i] & 0b10000000)  output_high(data);   
 else output_low(data); 

 

The reason the former is used is that I’ve found it always results in a slightly smaller hex file (at least 
using the CCS C compiler).   
 

5. Transmitting Data. 
 

Transmitting data involves taking characters as they come in the serial port (from the PC) and 
sending them out to the transceiver.  I used an 80 character ring buffer (called buf[]) to hold the 
characters as they come in and wait for transmission.  The variable inpointer keeps track of where in the
buffer the next character should be inserted and the variable backlog keeps track of the number of 
characters that have yet to be transmitted.  The code for receiving the characters from PC looks like this:
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void addchar(){ 
 buf[inpointer] = getc();  //get character from USART 
 inpointer++;      //increment pointer 
 if (inpointer >79) inpointer = 0;  //wrap if end of buffer 
 backlog++;     //one more byte in the buffer 
} 

 
 A third variable, outpointer, keeps track of the location in the buffer that the next character to be 

transmitted is.  If backlog is greater than zero, it means characters are available to be transmitted.  Each 
time a character is transmitted, the backlog variable must be decremented.  The code to transmit looks 
like this: 

 
config(XMIT);  //switch to transmit mode 
while (backlog > 0){ 

output_high(CE);     //  get ready to put in address and data    
if (bit_test(pir1,5)) addchar();   //  add bytes to buffer from serial port if necessary 
sendbyte(address);   //  load the address byte into the transceiver 
sendbyte(buf[outpointer]);     //  load the data byte 
output_low(CE);      //  this actually causes the transceiver to send 
TMR0=0;    //  you have to wait while it’s doing the sending 
while(TMR0 <10) {   //  we use timer0 to measure this time. 

  if (bit_test(pir1,5)) addchar();  //add bytes to buffer from serial port if necessary 
} 
outpointer++;     //increment sending pointer 
if (outpointer > 79) outpointer = 0;  //wrap if at end of buffer 
backlog--;     //decrement characters to be sent 

}//end of while 
config(RCV);  //switch back to receive mode 
 

Calls to the config function simply change the transceiver from receive to transmit and back again.  If 
there are multiple characters awaiting transmission, the code does not switch back and forth between 
transmit and receive in between characters.  Raising the CE line makes the transceiver active.  Note:  the 
CE line must be high while characters are being loaded into the radio even though the RF section is not 
being used at this point.  This is because lowering the CE line is the signal to the transceiver to actually 
send the data.  The fourth line of code checks to see if another character has come in from the serial port 
(the PC).  If so, the addchar function is called to add it to the buffer.  The address and data bytes are then 
clocked in using the sendbyte function.  Sendbyte takes bits off the left end of the byte to be loaded and 
clocks them into the transceiver.  This is exactly the same way the configuration bytes are loaded in the 
config function. 
       

At this point a pause is necessary because we can’t load the address and data registers with new 
characters until we’re sure that the previous byte has been transmitted.  However, we can’t just write a 
line of code that causes a delay here because additional data may still be coming in via the serial port 
and we need to put that data in the buffer.  So timer0 is used to cause a 1 millisecond delay and during 
this period we service the serial port if necessary.  This is actually more time than should be required 
here; further experimentation is needed to determine the smallest possible value.   

 
After all the outstanding characters have been sent, the config function is called again to place the 

transceiver back in receive mode. 
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6. Receiving Data 
 

Receipt of a byte of packet of data is triggered by the DR1 line (hooked to PORTB, pin 0) going 
high.  At that point the data is ready to be transferred to the PC via the microcontroller’s serial port.  
Here is the code that causes this to happen: 
 
void receive(){ 
int j, indata; 
 set_tris_b(0b00010011);  //  data line must be an input 
 indata = 0;    //  initialize the variable indata 
 for (j = 0; j<8; j++){   //  for each of 8 bits 
  indata = indata <<1;  //  shift to next bit.  Note the first bit received will be MSB. 
  if (input(data)) indata++; // the default is a zero, if the data line is high, make it a 1. 
  output_high(clock);  // have the transceiver move to the next bit 
  delay_cycles(1); 
  output_low(clock); 
 } 
 putc(indata); 
} 
 

The data line on PORTB must be changed from an output to an input in order to be able to read the 
incoming data.  The CCS C compiler statement set_tris_b accomplishes this.  Then for each of the 8 bits 
the data line is read.  Having the clock line rise and then fall causes the transceiver to move to the next 
bit in the byte.  This process is essentially the reverse of the process that is used to transmit data. 

 
6. Putting It All Together 

 
The main part of the program must accomplish three things.  First, it must make sure that bytes 

that come in via the serial port from the PC are put in the buffer.  Second, when the DR1 line goes 
high it must receive the incoming characters from the transceiver.  Third, when there are characters 
in the buffer to send it must call the transmit function.  The first two of these functions could have 
been accomplished using interrupts, but since this program really doesn’t do anything else, there 
didn’t seem to be much point to it.  As complexity grows (implementing error checking or forward 
error correction, for example) it may be useful to switch to an interrupt driven structure.  For now the 
main program loop looks like this: 

 
while(1){ 
 if (bit_test(pir1,5)) addchar();     // add bytes to buffer from serial port 
 if (input(DR1)) receive();   //  if there are bytes to be received, get them 
 if (backlog> 0)   transmit();     //  if there are bytes to send (via radio) send them 

  } 
 

7. Experimentation  
 

Unfortunately at this writing I’m just getting started on the experimentation portion of this 
project.  Currently I have data flowing back and forth between two serial ports on my PC using this 
virtual serial cable at 9600 baud.  It should be possible to revise the code to shorten the delays to 
achieve higher data rates.  However, since it is possible to reprogram most radios using a serial port 
speed of 9600 baud, increasing the speed is not my highest priority.   
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The biggest problem that I have currently is that the range of the device in my environment is 
nowhere near that which is advertised.  The folks at Spark Fun used these modules in the open air for 
a range test and came up with a figure of 686 feet.  They did not get anything like perfect copy at 
that distance, but they were able to push data through the pipe.  At distances of 20 feet indoors I’m 
seeing virtually perfect copy.  As I push this out to 30 to 40 feet, however, the number of characters 
received falls off.  I’ve not had enough time to experiment carefully with this, but my impression is 
that copy declines very rapidly… that is, there is a point where nearly perfect copy falls off to nearly 
no copy.  A significant part of the range issue is almost certainly related to the fact that I’m doing the 
testing indoors.  I’ve also got a number of other 2.4 GHz devices in the house and it may be that 
changing frequency will help some.  Since I’m planning to run the indoor version of this unit off of a 
USB cable, it may also help to mount the transceiver on a window and run a USB cable from there 
to the computer.   

 
The Nordic nRF2410 is really quite an amazing device.  Just a few years ago the idea that data 

could be sent even over short distances at these high speeds using a $3.50 device would have been 
considered absurd.    


