
KidCQ: A Prototype System for Direction Finding Abducted Children

Caroline Guay - VA3WYZ, Mike Kennedy - VA3TEC & Brian Neill-VA3BPN

August 10, 2004

Abstract

This paper was written to document the design and implementation of the KidCQ prototype tracking system which
could help in locating abducted children. KidCQ places an emphasis on protecting the privacy of children. Strong
protective mechanisms have been incorporated to prevent fraudulent use of this tracking system.

1 KidCQ Overview The KidCQ system requires very close collaboration be
tween Police, parents and the amateur community. The

The KidCQ prototype is a child tracking system with a strong system would only be used within the context of a life
focus on protecting the child's privacy. Essentially this paper threatening emergency, similar in scope to the activation re
goes beyond presenting another tracking system and focuses quirements of the well known Amber Alert program.
on describing a set of protective mechanisms that are used to
prevent system abuse and protect children wearing a tracker.

With the above assertion in mind, the first "rule" of the
1.1 Technical Overview

KidCQ system, is that only the Police may activate a KidCQ The tracking device will not transmit any infonnation about
tracking device. The device itself is quite simple, it is a pas the child's location until it is activated by the Police. In order
sive device that listens to a designated frequency for an acti for Police to activate the child's tracker, the parents must first
vation code. If an activation code is received and proved to provide the police with the serial number of their child's de
be authentic, then the device will enter a beacon mode, trans vice at which point the Police can generate an activation code
mitting a tone on a designated frequency so that authorities or using a special KidCQ smart card.
ham operators may Radio Direction Find (RDF) the device. Once an activation code has been generated for the child's

Police authorities are the only group capable of generat tracking device, it is broadcast using the APRS protocol on a
ing KidCQ activation codes, this is a primary concept of the designated 2 meter frequency.
the KidCQ system that is thoroughly discussed in the follow AlI KidCQ devices are listening to this frequency for an
ing sections with the aid of technical implementation details APRS based KidCQ activation messages addressed specif
and source code samples. ically to them. When a message is received, the device

Parents also playa key role in activating a KidCQ track evaluates the message, and if an authentic activation code is
ing device. Activation Codes are tailor made for each device present, the device will transmit a beacon tone on 2 meters.
using a unique serial number. Before Police can generate an The activation code is discussed in further detail later, but
Activation Code, the parents of the missing child must give it is important to note that activation codes are generated and
Police the serial number of their child's KidCQ tracker. authenticated using a fonn ofcryptography known as digital

Once the serial number has been used to generate the ac signatures. The legitimacy of experimenting with this tech
tivation code, the code must be broadcast over a designated 2 nique as a Ham radio operator is also discussed in sections
meter frequency until a tone from the sought KidCQ device below.
can be heard. At which point RDF techniques can be used to For now, the reader is asked to take it on faith that se
pinpoint the device and the missing child. cret encrypted messages are not being transmitted on Ama

Transmitting the activation code, searching for a signal, teur bands. A device that receives a digitally signed activa
and RDFing the tracking device are all key areas where Ham tion code, will immediately verify that the code is authentic
radio expertise would be required by Police. The KidCQ sys and was produced by Police. At which time, the device will
tem relies fundamentalIy on the emergency preparedness of begin actively broadcasting a beacon tone where RDF tech
the amateur radio community and our long standing tradition niques can be used to track the device.
of providing communication services during times of emer The ability to generate an activation code is restricted to
gency. An abducted child is just such an emergency. Police using smart cards. A smart card is similar to a banking

7

KIDCQ OVERVIEW	 1.2 Police Officer: Generating an Activation Code

card. It is made mostly of plastic and has the same form fac
tor as the wallet sized credit card. And like a bank bard, the
owner is required to have the card in-hand and have knowl
edge ofa secret Personal Identification Number (PIN) in order
to do anything useful.

While smart cards look like a typical magnetic strip credit
card, in the KidCQ prototype system, the smart card is actu
ally a small computing device with a processor and internal
memory I . When the card is inserted into a reader, power is
supplied and the user interacts with the card using a PC that
is attached to the smart card reader. A Police officer inputs a
PIN and a KidCQ device serial number, the smart card pro
cesses the request and sends back an activation code. The
smart card has secret information that it uses to generate the
activation code. However, the activation code itself is not a
secret, as anyone can read, validate and understand its mean
ing.

Much of the security of the KidCQ system is dependent
on keeping information in the smart card private and con
trolled, so what happens if a KidCQ smart card is stolen along
with the PIN? This is a valid concern, as a single KidCQ card
literally holds the key to the entire system. The key is just a
piece of data, but ifit is divulged then the system is broken.

The system is also broken if someone who steals the card,
never actually sees the secret data, but is able to use the card
to make an infinite number of activation codes starting at se-

KidCQ ACDWJtion CDd~ is Created.

K1dCQ
Po6ce Smart Smarl Card
CaRl Police Aetivalion

Reader Code Generator

rt::l
Program ~

lop",Ol'I"'! \ Au'horize
S,"", Numb" ,\Uh I'IN	 KidCQ Activalion Message

........ -- .. --. -- . - - ..
~

APRS 10vor 'ho Air)
Parenl Police Oflicer

Laptop Phone

PC E-Mail

rial number I and working their way up.
To mitigate this risk, each KidCQ smart card can produce

a maximum of 5 activation codes. This small fixed number
of uses, allows for a search to be conducted for a child who
may be wearing one of many possible tracking devices. The
intention however, is that one smart card is used for one ab
duction search before it must be replaced. After the card has
been used up, it erases it's internal memory and wipes out the
secret data that is used to create KidCQ activation codes.

Limiting the use of the smart cards allows Activation
Code creation to be controlled beyond simply trusting local
police departments not to lose the card. Human nature will
allow for more than one card to be lost or possibly stolen.
Keeping low the number of code generations that can be per
formed by a single card will decrease the impact of losing a
smart card in the field.

A smart card is like a small computer, it can perform com
putations and store small amounts of data, but most impor
tantly it is self contained. Cryptographic calculations are per
formed on card with keys that are stored on card. This is very
useful for keeping the KidCQ cryptographic keys a secret, Po
lice can use the key to make an activation code, but they can
never see the key or divulge its value.

Also, removing the secret keying data from the smart card
is not an easy task. Any physical attempts to "open" the card
will typically destroy it.

Police Officer Ham Operator

~
-. --. ---- -- -- - -

. Receiver

KidCQ Prototype Device

~
KidCQ

- TNC-X
Verification - Daughter
Board
IPIC'B)

KidCQ O.lflCe En/en B~tu:otl Mode
II Succ.ssJuUy ActJ'wued.

Figure I: KidCQ Activation Code Data-flow

1.2	 Police Officer: Generating an Activation
Code

With the serial number in hand, a Police officer inserts a
KidCQ smart card into a reader that is connected to a com
puter. A windows application as shown in figure 2 screen
shots is used to interface with the smart card in the reader.

I but no power supply

The screenshots show two input fields, one for entering the
PIN that will unlock the smart card, and a second field for en
tering the KidCQ device serial number for which an activation
code is required. Once the Generate Code button is pressed,
both pieces of information are sent to the smart card where
the PIN will be confirmed and if the PIN is valid an activation
code for will be returned for the specified serial number.

8

KIDCQ OVERVIEW	 1.3 Ham Operator: Transmitting the Code with APRS

It is important to note that the activation code is not calcu
lated on the computer, and that the program in the screen shots
is only an interface to the smart card where the real computa
tion takes place. Details about the smart card implementation
are described in section 3 below.

At the bottom of the program window is a boxed off sec
tion called "Smart Card Status" that is used to display state
information queried from the smart card. This box will tell
the user if the wrong smart card is plugged in, if a the KidCQ

smart card has expired due to failed login attempts or if the
card is inactive due to over use.

Also present in the screen shot is a button titled "load
smart card firmware". This button was added for the purpose
of prototype development and for easier demonstrations it is
a convenient short cut for loading firmware to the card and
initializing the card with a static serial number and prototype
keying data.

Each =art CIlld ,,<rique (dirit pin. _ mu.l know lhe pin 10 ~" "code. Each_I c.ord he> e ""'""" 4 ~ pi>. _ mu<l know the pin to poduce a code
The pin w... \iv 10 JIOU when _ nlCeived !he <mart CIlld

Yro ortt get 5 chMceo 10 enlel !he pi>. COIIedljo. Failing to oriel the oorecl pi> 5
IInoo will diUlbie !he CIlld

1234PIN: 1
• EVefJI chid ~ d<>viee h& it. -.1IIiquo tefial number. You mutt. obl,*, lNs

"""" runbef f,om !he parents norder to ",orb:e en acI.velion code thai will enable
the ehId motion device', beocoo. A...ia1 runber CllNi3l> of 10 thllIactlll•.

Genet"'. Code I Clo&e

Smst c..rd Sial...

c..rd Slate: tlOl1llOl

C..dU l.eft:
;. For O.....1opment O~

I.Load Smert Card Fimware "
PIN Tne. Remaining: 5

Figure 2: Police Activation Code Generator

PIN Tries Rllflleining: 5

The '*' . .
You My gel
lime: will

PIN:

"<'iv.hon Code f2 Chofocl.. Hew Fcxmolt

rm5i;i234~m>""5E05ll8A6AllS9lGCellG&37ii6i5F1FEi4&m0CBA9iF5iABi

Send CarQ/ i

Figure 3: Program To Broadcast KidCQ Activation Message

1.3	 Ham Operator: Transmitting the Code
with APRS

Once an activation code has been generated by the police (see
figure 2), it can be handed over to Ham radio operators for
broadcasting on the designated KidCQ 2 meter frequency.

To broadcast the activation code, a Ham operator is re
quired to have a PC, a TNC and a transmitter. Since the
KidCQ activation message is wrapped in an APRS packet, a
Ham is also required to have software capable of transmitting
the APRS based activation message.

The prototype system uses the kidcq_transmit application
shown in figure 3 to wrap the activation code in a custom
APRS message. The KidCQ APRS message is specified in
Appendix A: KidCQ protocol specification.

The kidcq.transmit program broadcasts the message by
interfacing with a KISS mode TNC over the COMl serial
link on the windows platform. The operator must enter the
activation code provided by police as well as their callsign
and APRS digipeater aliases list.

KidCQ makes use of APRS aliases to propagate and filter

9

2 CRYPTOGRAPHY AND DIGITAL SIGNATURES	 1.4 Direction Finding the Device

the packet.

1.4 Direction Finding the Device

Direction finding a device that is emitting an RF signal is a
distinct topic in itself. There is an entire sub-culture of Hams
that practice tracking down rogue transmitters for sport. And
techniques range from complex distributed triangulation of
signals using using APRS2 to lone Hams that home into a
signal using a directional antenna. The later is presented as
an example using a simple dipole.

It is easier to use the nuIl (or end) of a simple dipole to
determine the direction from which the signal is coming from
than to use the main lobes of the dipole. This is advantageous
since the nuIl on a dipole has a narrow beam width and can be
rotated and moved around until a signal can barely be heard.
The spot at which the signal strength is at its weakest should
position the dipole so that it is pointing to the source of the
signal. Circling around the area of the potential signal source
wiIl confirm the position of the signal if the dipole is always
pointing to the centre of the circle.

For the KidCQ prototype it was decided that a beacon
transmitter operating in the 2m band would be used. The
main reason for choosing this band was because most Hams
own equipment and can operate in the 2m band. Also, it is
much easier to RDF in the 2 meter band due to the fact that
there are fewer reflections than in higher frequencies.

Choosing 2 meters has its drawbacks, it is a lot more chal
lenging to design hardware within the constraints of a device
that must be carried by a child. Most of the available3 low
power consumption ICs that can be found, operate in the 800
900 MHz band. And certainly receiver and transmitter ICs
greatly impact size and practicality of any tracking device.
But none the less, time and money can solve the problem
of making a smaIl tracker. The KidCQ prototype presents
a proof of concept system that guards privacy.

2	 Cryptography and Digital Signa
tures

Secure data communication can be a confusing topic. To help
with the discussion of cryptography, two fictional characters
Alice and Bob are introduced. Alice and Bob would like to
communicate with each other over an untrusted, non-secure
channel.

Now, in the case of ham radio, we are not so concerned
with communicating secrets. In fact, this is an iIlegal use of
our privilege. However, it may be the case that we would like
to prove the identity of the person with whom we are com
municating. So long as the information communicated is not
secret, we are operating within the legitimacy of our license.

This section presents both methods of secure communi
cation with Alice and Bob being used to iIlustrate.

In symmetric key cryptography, both Alice and Bob share
a single key. If Alice wants to send a secret message to Bob,
Alice will encipher the message with their shared key, send
the resulting cipher text to Bob who wiIl use the same shared
key to decrypt the message and read the plain text. Now, it's
extremely important to note, that in this short scenario, both
Alice and Bob are not acting as ham radio operators since this
method of enciphering can only be used to send secret mes
sages. And sending secret messages over amateur bands is
strictly prohibited.

Symmetric key cryptography is typicaIly what we think
of when we hear stories of the aIlied code breakers versus the
Japanese and German code machines of World War 2. Keep
in mind that all of the secrecy provided by symmetric key
cryptography is dependent on a single shared key, and that the
two communicating parties must know the key value and must
agree on the key value at some point before using it. This type
of "key management" has some inherent problems, after all,
during wwn keys were not always discovered by aIlied code
breakers, sometimes they were acquired by boarding enemy
submarines or during special operations behind enemy lines.
With this in mind, the second type of encryption, public key
cryptography is next presented. This method of cryptography
does not rely on a single shared secret key.

In 1976, Whitfield Diffie and Marty HeIlman introduced
a new method of enciphering, referred to today as Public Key
Cryptography. Let's say Alice wants to send a secret message
to Bob using public key cryptography. Bob wiIl first produce
a "Key Pair" consisting of a Public Key and a Private Key.
These two keys are mathematicaIly related, however it is con
sidered extremely hard to deduce or calculate the Private key
from the Public one. Bob's Public key is published in a phone
book, or something equivalent that Alice knows she can trust,
and Bob keeps his private key secret to himself. If Alice wants
to communicate with Bob, she wiIl first lookup Bob's public
key in the phone book, and use it to encrypt her message to
Bob. Here's the important part: the math behind public key
cryptography ensures that Alice (or anyone else) can encrypt
a message for Bob, but only Bob can decrypt the ciphertext
using his Private key. So even though Alice encrypted a mes
sage for Bob, she is not able to decrypt her own message, only
Bob can decrypt the ciphertext message.

As with symmetric key encryption, public key encryption
is iIlegal for hams to use over the air. In fact, any time we use
the word "encryption" it is a safe bet that we are talking about
data secrecy, something that is strictly off limits to Ham radio
operators. So why are we discussing encryption within this
paper at all?

It turns out that there is a unique property of public key
cryptography that can be twisted to make it both legal and
useful within ham radio. In the example above, Alice en
crypts a message with Bob's public key producing ciphertext
that only Bob can decrypt with his Private key. Consider what
would happen if instead, Bob used his private key to encrypt a
message so that anyone could read the message by decrypting

2PocketAPRS for the palm pilot, has triangulation features built in for this purpose.
J Within the budget of an Amateur radio operator.

10

3 PROTECTING CHILDREN WITH SMART CARDS

it with Bob's public key. In this case, we have a coded mes
sage that is public, where anyone who wants to read the mes
sage can do so and everyone knows that the message could
only have originated from Bob. Bob has just created a digital
signature.

A digital signature is a piece of data that is appended to a
message and calculated using a person's private key. Anyone
who reads the message can verify that the message originated
from the proposed sender, by verifying the signature using the
sender's public key. This method of"encryption" does not in
volve any message secrecy, since anyone can read the original
message, and anyone with the public key can decrypt/verify
the digital signature portion of the message.

The fact that digital signatures are not used to make a mes
sage secret is very important when used in the context ofHam
radio. In Canada, Hams are govemed by the Radio Commu
nications Act. The regulations of that act state thar4 :

Communications with Radio Apparatus in the Amateur
Radio Service

[SOR/2000-78, s. 8]

47.	 A person who operates radio apparatus in the
amateur radio service may only

(a) communicate with a radio station that operates
in the amateur radio service;

(b)	 use a code or cipher that is not secret; and

(c)	 be engaged in communication that does not

include the transmission of

(i)	 music,

(ii)	 commercially recorded material,

(iii)	 programming that originates from a

broadcasting undertaking, or

(iv)	 radiocommunications in support of industrial,

business or professional activities.

SOR/2000-78, s. 9.

The wording is extremely important, note that the reg
ulations do not state codes and ciphers can not be used, it
specifically states that codes and ciphers may not be used for
secrecy.

The bases for this presentation of encryption, digital sig
natures and the Radio Communications Act is to justify
KidCQ's use of digital signatures in its customized APRS
based communications protocol. KidCQ requires the trans
mission ofdigitally signed messages, and countries that allow
codes and ciphers to be transmitted over the air for purposes
other that data secrecy, will allow experimentation with the
KidCQ protocol.

4Notice item 47(b)

3	 Protecting Children with Smart
Cards

The purpose ofusing a smart card to dole out activation codes
is ultimately to protect children from fraudulent use of the
KidCQ System. The entire system teeters on the premise that
only a police officer can make an activation code that will
be used to enable a device that tracks a child. Undemeath
the covers, this restriction is made possible by the fact that
the KidCQ cryptographic private key remains a secret. If the
private key is compromised, stolen, or accidentally divulged
then anyone who knows the private key can generate their
own valid KidCQ activation codes.

The more people that know a secret, the more likely that
secret will be compromised. By using a smart card, access to
the private key can be given to a police officer but the private
key will never be revealed. The smart card has a small amount
of intemal memory and is capable of performing computa
tions, all it requires from the outside world is a small amount
of power and some input data to operate on. By performing
all cryptographic signing operations on the smart card, the
private key can remain safe within the card and never be di
vulged.

Other protective mechanisms are implemented on the
smart card as well. If a user of the card enters the wrong
PIN too many times, the card will consider the user a threat
to the KidCQ system and destroy its copy of the private key.
Also, the card is of limited use and after successfully gen
erating a limited number of activation codes, the card will
erase the private key. The justification for this action is that
a legitimate police officer can easily obtain another KidCQ
activation card, but a thief can not. If someone were to steal
a KidCQ smart card, the damage that could be done through
fraudulent use of the card is limited to the generation of 4 or
5 activation codes.

Not all smart cards are made equal. In essence, a smart
card is an integrated circuit (IC) embedded in a piece of plas
tic, that has the form factor of a standard size credit card. The
first difference people notice about a smart card is the serial
interface connector that is about the size of a fingernail and
can be seen on the top of the card.

Generally speaking, a smart card can be a variety of spe
cialized circuits from a small piece of flash memory to a small
computer capable ofcomputations. However, one of its defin
ing properties is that a smart card does not have its own power
source, nor does it have a human interface. A smart card must
be inserted into a reader terminal so that it can receive power
and communicate with a user.

The KidCQ system uses a special type of smart card
called a JavaCard. JavaCards are flash programmable and na
tively capable of some sophisticated mathematical routines
commonly used in cryptographic algorithms. As one would
suspect, you program a JavaCard using a subset of the Java
programming language. This subset is defined in the JavaC
ard specification that is maintained by Sun Microsystems.

While Sun defines the programmer interface for JavaC

11

3 PROTECTING CHILDREN WITH SMART CARDS

ards, these smartcards are manufactured and sold by compa
nies that specialize in smartcard technologies. For example,
ST microelectronics manufactures smart card ICs and will
embed them in a plastic credit card package. A company like
Axalto, will contract a company like ST microelectronics to
mask the smart card ICs with special program code during
the manufacturing process. Axalto would then sell these cus
tomized smart cards in the marketplace with it's own brand
ing, such as "Cyberflex Access" JavaCards.

The KidCQ activation card is a Cyberflex Access JavaC
ard. This card natively supports all of the cryptographic op
erations required to generate an activation code, so program
ming the card is relatively easy, the only thing that must be
implemented is a communication protocol and a simple state
machine. All of the cryptographic math comes for free.

As an example, the fol1owing code snippet is used on the
smart card to generate the activation code. All of the fimc
tion calls in this code sample are part of the native JavaCard
Application Programming Interface (API), meaning that no
other low level crypto programming was required to generate
the activation code.

II Create Shal digest object.
digest = MessageDigest.getInstance(

MessageDigest.ALG_SHA,
false) ,

II Create an RSA Private Key object.

II Fill it in later.

priv_key = (RSAPrivateKey) KeyBuilder.buildKey{

KeyBuilder.TYPE_RSA_PRIVATE,
KeyBuilder.LENGTH_RSA_l024 ,
false) ,

II Create an RSA signature object.
signature Signature.getInstance(

Signature.ALG_RSA_SHA_PKCSl,
false) ;

II Signature object is in sign (not verify) mode

II using the specified private key.

signature.init(priv_key, Signature.MODE_SIGN);

private void genSig(APDU apdu) (

byte buffer[J = apdu.getBuffer();

II Check state of the card is not in HALT.

if (state != STATE_NORMAL) (

ISOException.throwIt(SW WRONG STATE);

) II if -

pin.reset() ;

II Check Usage Count.

if (usage_count == 0) (

ISOException.throwIt(SW_USAGE_EXPIRED) ;

} I I if

II get the incomming user data,

short readLen = apdu.setIncomingAndReceive(),

short offset = IS078l6.0FFSET_CDATA;

II Validate Pin.

if (!pin.check(buffer, offset, (byte) Ox04»

ISOException.throwIt(SW_WRONG_PIN) ;

}

offset += 4,

II Inialize Activation Code Buffer with O's

Util.arrayFillNonAtomic(act_code, (short) 0,

(short) 256, (byte) OxOO),

II Copy this Smart Card's serial number to

II first 3 bytes of the activation code.

Util.arrayCopy(sc_id, (short)O, act_code,

(short) 0, (short) 3);

II Copy the 5 bytes of Device Serial number

II sent to the card by the user, to the

II activation code buffer.

Util.arrayCopy(buffer, (short)offset, act_code,

(short)3, (short)5) ,

II Hash the two serial numbers.

digest.reset() ,

digest.doFinal(act_code, (short) 0, (short) 8,

digestBuffer, (short) 0);

II Generate the signature. Append it to the

II Activation Code. Will be 128 bytes in size.

try (

signature.sign(digestBuffer, (short) 0,
(short) 20, act_code, (short) 8);

catch (CryptoException el) (

II Decrement Usage Count.

usage_count -= 1;

II Concatinate data and signature and return.

apdu.setOutgoing() ;

apdu. setOutgoingLength ((short) (128 + 3 + 5»,

II Send the Activation Code back to the user.

apdu. sendBytesLong (act_code, (short)O,

(short) (128 +3+5»;

} I I genSig ()

The beginning of this code sample shows how the digest,
key and signature objects are instantiated. This code is ex
ecuted when the program is flashed to the smartcard. These
objects maintain their state on the smart card until the pro
gram is deleted or re-flashed.

The genSigO smart card function in the sample above is
called when the user attempts to generate an activation code.
For example, when a user inserts the smart card into a reader
and uses the Police Activation Code Generator Windows ap
plication.

From looking at the source sample, it is important to note
how the activation code is actual1y generated. When the user
asks for an activation code for a particular KidCQ device's
serial number, the device serial number and the serial number

lThe serial number of the sman card is assigned to the card at the same time as when the KidCQ private key is injected.

12

5 KIDCQ DEVICE PROTOTYPE

of the smart cards are placed into a buffer, the buffer is hashed
and signed using the KidCQ private key. The signature is ap
pended to the buffer and final1y the buffer is returned to the
user as the activation code.

This process effectively fingerprints each activation code
being generated by a KidCQ smart card and so any activation
code can be traced back to the police agency that owns the
smart card.

The ful1 KidCQ JavaCard program listing is approxi
mately 80 percent larger than the code snippet that is shown.
Most of the remaining code was written to handle data com
munications with the host PC at the other end of the smart
card terminal. The rest of the program also implements the
state machine for the card that is presented below in figure 5.

The smart card does not have the KidCQ private key when
the program is first flashed to the card. The private key is in
jected into the card at a later time, and this is reflected in the
smart card's state machine. The intention of this feature is to
isolate the card manufacturing process from having to know
the private key. By separating key injection out of this pro
cess, it leaves the possibility for some group, possibly federal
police, to handle key injection and card distribution.

The state machine also shows how failed PIN attempts
and card usage affects the state of the card. When either of
these counters reach 0, the card enters a HALT state where
the private key is erased and the card will no longer respond
to code generation requests. In the prototype, each of these
counter values are initialized to 5, so the user only has 5 at
tempts to correctly enter the PIN, and the card will only gen
erate 5 activation codes.

4	 Transmitting the Activation Code
llsingAPRS

In order to activate a child's KidCQ device, the digitally
signed activation code must be delivered over the air. This is a
Ham experimental project with one ofthe primary goals being
to take advantage of existing Ham infrastructure. Natural1y
TNC based transmission ofAX.25 packets on the 2m band
was selected for a delivery method. However, a quick glance
at the KidCQ protocol in the appendix will reveal that KidCQ
activation messages are also wrapped in custom APRS mes
sages.

APRS was used for a number of important reasons. The
first being the wide proliferation of the protocol within the
amateur community. Hams that do not care to investigate
packet radio have most likely seen an APRS node in action.
So it is much easier to communicate the nature of a KidCQ
message by saying that it is simply a special APRS message
type instead of explaining unconnected AX.25 packets.

There are good technical reasons for employing APRS as
a delivery mechanism, such as the use of APRS digipeater
aliases. Piggybacking KidCQ messages on the APRS proto
col and infrastructure means that the benefits of packet prop
agation using aliases like RELAY, WIDE and IGATE can
be acquired for free. Also, if KidCQ ever grows beyond

a prototype system then transmission of KidCQ activation
messages can easily be integrated into the numerous existing
APRS software packages, taking advantage of existing proto
col stack implementations.

As noted earlier, the KidCQ protocol specification is in
cluded as an appendix to this paper.

KidCQ Device Prototype 5

5.1 Hardware Design

While small size and low power consumption are not the fo
cus of the KidCQ prototype, it was considered important to
present a relatively small device with minimal power con
sumption using existing components from the amateur com
munity where possible. For the purposes of experimentation
and prototyping the KidCQ device is adequate but certainly
not complete. Ideally, a future development project for a real
KidCQ device will be to shrink the design by using surface
mount parts and ICs with ultra low power consumption.

The device as it is, performs the fol1owing functions (refer
to the block diagram in Appendix C figure 4:

•	 The receiver gets the signal and passes it to the TNC-X.

•	 The TNC-X takes the signal and divides it into APRS
packets.

•	 These packets are passed on to the TNC-X's daughter
board, which is a custom made for the KidCQ applica
tion.

•	 If the daughter board finds that the information con
tained in the packet is the activation code that this par
ticular device is looking for, and the code validates, it
sets a high signal on pin #2 of the picI8t252.

•	 The high on pin #2 turns on the beacon transmitter.
This same high signal is used to tum off the receiver
since the receiver and the beacon transmitter use the
same antenna for their operation.

A I KHz tone was chosen for the the beacon transmitter
since it was a frequency that could be heard by the human ear.
The tone is generated by a MAX038 chip using a sine wave.
A simple oscillator would have worked just as wel1, however
the MAX038 was what was lying around the workshop and it
helped save on experimentation and integration time.

5.2 TNC-X and KidCQ Daughter Board

The KidCQ child device prototype uses John Hanson's TNC
X board to transmit packets over the air. The TNC-X has
been extended using the daughter board interface to include
a second PIC microcontrol1er to process incoming packets.
The second PIC is a model pic18t252 that was selected for its
increased RAM and 8x8 bit multiplier.

A KidCQ digital signature is a very big integer value and
it takes 128 bytes to store this value. In order to verify an
RSA digital signature, this 128 byte integer value must be

13

5 KIDCQ DEVICE PROTOTYPE 5.3 KjdCQ PIC18 Program

cubed and reduced by a modulus defined in the public key.
i.e. Keep dividing the cubed number by the public key num
ber until there is only a remainder.

So the signature is 128 bytes long, the public key is 128
bytes long, and multiplying two 128 byte numbers together
will potentially result in a 256 byte number. Most of the PIC
16 series chips have less than 512 bytes of RAM. Without
some very expensive and sophisticated memory paging op
erations, a Pic 16 series chip can not store all of the required
data. Also, pic 16 chips do not have a multiply operation mak
ing exponentiation of large integers extremely time consum
ing.

In order to handle the number crunching requirements of
an RSA signature verification, the KidCQ prototype uses the
more expensive Pic 18 series chips, specifically the pic 18f252
model that includes 1.5 kB of RAM and an 8x8 bit multiplier.
This microcontroller has enough RAM to store the public key,
digital signature, incoming packet and still meet the mathe
matical scratch space requirements of the signature verifica
tion algorithm. Also, the 8x8 bit multiply operation allows
a 128 byte integer to be cubed and reduced in a reasonable
amount of time. Tests during prototype development have
shown that a signature can be verified on the order of 20-25
seconds.

5.3 KidCQ PIC18 Program

The KidCQ program will be described in this section with a
top down approach, starting with the main routine. The pro
gram begins by waiting for a KISS packet from the TNC-X
on the UART communication port of the picl8f252. As de
scribed above, there are many protocol wrappings in between
the KISS message and a KidCQ activation code. Essentially
the program tries to filter messages that are not KidCQ at the
first opportunity that is presented while processing each pro
tocol layer.

The following code snippet was taken from the KidCQ
Pic 18's program. It is written in C and the CSS PCH com
piler is being used:

void kidc~receive(KIDCQ_RSA_TYPE*kidCQ) {
int8 packet [AX25_PACKET_LEN] ;
int8 packet_len;
intI rv = OJ

while (rv FALSE) (
packet_len = AX25_PACKET_LEN;
kiss_receive (packet, &packet_len);

rv = aX25-process(packet. &packet len);
if (rv == FALSE) {

continue;
} I I if

rv = aprs-process(packet. packet_len, kidCQ);
if (rv == FALSE) {

continue;
} I I if

} I I while

II kidc~receive()

Here we loop (forever), processing incoming packets and
removing the KISS and AX.25 protocol wrappings. The func
tion call tree is kept flat, meaning that each of the functions
above, like ax25_process. will avoid making any further func
tion calls with the packet and where possible, packets are pro
cessed in place to avoid "blowing the stack". Each packet is
upwards of 135 bytes and so balancing code readability and
memory limitations can be tricky at times. Fortunately the
CSS compiler that was used in this project is a big help for
managing available memory. Once a valid KidCQ message is
received and parsed, the resulting data is stored in the follow
ing structure:

typedef struct

IIDevice serial number
int8 cld_sn[CLD_SN_SIZE];

IIPolice card serial number
int8 police_sn[POLICE_SN_SIZE] ;

IIDigital signature
int8 signature [RSA_SIZE] ;

KIDCQ_RSA_TYPE;

This filled structure is passed back up to the main routine
after one final validity check. The device serial number that
was transmitted with the message is compared to the Serial
Number that is statically embedded in the program6

Upon returning to the main routine with a KidCQ activa
tion message, the program will next try to validate the signa
ture using the KidCQ public key that is also statically embed
ded in the program code. Refer to Appendix B for a listing of
the KidCQ RSA public key.

As mentioned above, the main routine uses this public key
to verify the signature in the KidCQ message:

IINOTE: CLD stands for Child Location Device.

void main () {
int8 message [81 ;
int8 digest [20] ;
KIDCQ_RSA_TYPE kidCQ;
intI valid = FALSE;

fprintf (DEBUG, "started ... \r\n") ;

II used to filter KidCq messages for this
II device only.
memcpy(kidCQ.cld_sn, CLD_SN, CLD_SN_SIZE);

while (! valid)

II listen to the TNC-X for a KidCq message.
kidc~receive(&kidCQ);

II concatenate the serial numbers of device

II and police smart card.

memcpy(message, kidCQ.police_sn. 3);

memcpy(&message[3]. kidCQ.cld_sn. 5);

6 Admittedly, statically embedding the device serial number in the program code does not lend well to scalability. but for the purposes of a prototype it is
more convenient to re-flash the PIC than to create some special serial number provisioning application.

14

6 NEXT STEPS 5.4 Signature Verification in a PIC18

II Hash the serial numbers, the digest will
II be compared to that of the signature.
shal_final(message, 8, digest);

II "Decrypt" the signature, and compare the
II digest.
valid = rsa_verify(g_M, g_m-prime,

g_R_cubed_mod_m,
kidCQ.signature,
digest) ;

} I I while

II Enable the RF beacon.
output_high (PIN_AO) ;

I I main ()

First the device serial number and police smart card serial
number are concatenated and fed into a hashing function. The
resulting digest is fed into the RSA signature verifier along
with the public key and the signature that was sent over the
air.' The signature verifier will "decrypt" the signature using
the public key, and compare the decrypted digest to the digest
that was passed into the verifier from the main routine.

5.4 Signature Verification in a PIC18

An RSA signature verification is calculated by treating the
digital signature as a very large integer. Cube the signature,
and find the remainder after dividing by the Public Keys. The
remainder is compared to the message being verified. If they
are the same, than the signature was successfully verified.

The RSA verification engine consists of two components,
the high level RSA verifier, and the big integer arithmetic unit.
Both pieces of code have been built for this prototype from
scratch since the need for big integer math on a PIC is not
very common.

The custom big integer math library contains the follow
ing functions:

void multiply_l_n(int8 x, int y[], int6 y_len);
void add_n_n(int6 x[], int6 y[], int8 len);
void subtract_n_n(int6 x[], int8 y[], int6 len);
int6 compare_n_n(int6 x[], int6 y[], int8 len);

void MontgomeryProduct(int6 mIl,
int6 x[], int6 y[],
int8 m-prime, int6 AI],
int6 buffer[], int6 len);

In the functions above, the parameter len determines
how many bytes long an integer array is and so the maximum
integer value would be calculated using the formula 2 • (8 •
len). Most of these functions are standard grade school arith
metic algorithms, albeit operating in a base 256 radix. The
last function MontgomeryProductO is an implementation of
Montgomery Multiplication, 9 which is a time optimized mul
tiplication algorithm that will multiply 2 big integers, inter
leaving reduction steps (i.e. the modulo operation) through
out the algorithm such that the number of discrete operations

required to multiply and reduce two large integer values is
reduced.

#define LEN 129
#define KEYSIZE 126

intI rsa_verify(int8 public_modulus[],
int8 m-prime,
int8 R_cubed_mod_m[],
int8 signature[],
int8 digest []) (

int8 i = 0;

int8 A[KEYSIZE + 2];

int8 A2[KEYSIZE + 2];

int8 scratch_space[KEYSIZE + 1];

int8 comp_sig;

Montgomeryproduct(public_modulus,

signature,

signature,

myrime,
A,
scratch_space,
LEN) ;

II Shorten the A buffer for the next op.

for(i=O;i<LEN-l;i++)

A[i] = Ali+2];

j II for

Montgomeryproduct(public_modulus,

A,

signature,

myrime~

A2,
scratch_space,
LEN) ;

II Shorten the A2 buffer for the next op.

for(i=O;i<LEN-l;i++)

A2 [i] = A2 [i+2] ;

} II for

Montgomeryproduct(public_modulus,

A2,

R_cubed_mod_m,

m-prime ,

A,

scratch_space,

LEN) ;

II A should have the decoded signature.

comp_sig = compare_n_n(&A[KEYSIZE + 2 - 20],

digest, 20);

if (comp_sig == COMPARE_EQUAL) {

return TRUE;

j else {

return FALSE;

} I I if

I I rsa_verify ()

6 Next Steps

The RSA algorithm is not well suited for this application. It
was chosen for the KidCQ prototype because it is very easy

'The g-R_cubedJllodJll parameter is some static pre-computation on the public key to help speed up signature verification.

8Actually the modulus component of the public key.

9the reader is referred to "Handbook of Applied Cryptography", Menezes et al. for a complete description of the algorithm.

15

8 APPENDIX A: KIDCQ PROTOCOL SPECIFICATION

to implement. However, KidCQ will need to move away from
RSA because of the following:

•	 Currently a I024-bit RSA key is being used to produce
a digital signature that takes up 128 bytes of space in an
AX.25 packet. The signature expands further if a base
91 printable version is used in the APRS protocol. This
is very large and is not scalable given KidCQ device
constraints.

•	 An RSA key size of 4096-bits would be required to
meet the requirements for a production KidCQ system.
An RSA signature based on a 4096-bit key would be
too large for the AX.25 protocol and current PIC tech
nology. Over a 1200 baud TNC radio link, it is unlikely
a complete error free message could be sent given the
proposed KidCQ operating environment.

•	 The RSA signature scheme is classified as a signature
scheme with "message recovery". In short this means
that an implementation can easily be reversed and used
as a form of encipherment. Because of this, anything
that implements an RSA based signature scheme is ex
port controlled by the Canadian and US government.

To make activation codes smaller, KidCQ will need to
adopt a new digital signature scheme. Elliptic curve cryptog
raphy (ECC) is a very promising crypto-system. The ECDSA
signature algorithm would also address any export issues,
since the algorithm does not have message recovery and can
not be used for secrecy.

Crypto-systems aside, the KidCQ prototype needs to be
further tested with emphasis on field testing. Improvements

must also be made to the design, to get the device as small
and power conscious as possible.

7 Sources

I.	 Brian Neill, VA3BPN. Direction Finding Abducted
Children: Proposal For A New Amateur Radio Emer
gency Service, July, 26, 2003, 22nd ARRL and TAPR
Digital Communications Conference, ISBN: 0-87259
908-6, ARRL Order Number: 9086.

2.	 John Hanson, W2FS. TNC-X: An Expandable
Microcontroller-Based Terminal Node Controller,
22nd ARRL and TAPR Digital Communications Con
ference, ISBN: 0-87259-908-6. Available at: www.tnc
x.com

3.	 A. Menezes, P. van Oorschot, S. Vanstone. Handbook
of Applied Cryptography, CRC Press, Florida, 1997,
ISBN: 0-8493-8523-7

4. David	 Kahn. The Codebreakers. Revised Edition,
Scribner, NY, 1996, ISBN: 0-684-83130-9

5.	 Sun Microsystems. Java Card Platform Spec
ification, Sun Microsystems, Available at:
java.sun.com/products/javacardlspecs.html

6. RSA Laboratories. PKCS #1: RSA Cryp
tography Standard, RSA Security, Available at
www.rsasecurity.com/rsalabs/

8 Appendix A: KidCQ Protocol Specification

8.1 AX.25 APRS Frame

Refer to APRS specification, section 3.
Field Size Value Description
Flag 1 Ox7E AX.25 Flag
Destination Address 7 APZ525 Experimental APRS version designation. This will need to

be changed if system proliferates.
Source Address 7 cal/sign 6 character callsign and optional SSID of operator.
Digipeater Address 7-56 *, KIDCQ Normal APRS digipeater list, last digipeater address must

be KIDCQ.
Control Field 1 Ox03 UI Frame.
ProtocollD 1 OxFO No layer 3 protocol.
Information Field 1-256 APRS user defined information defined below.
FCS 2 Field Check Sequence.
Flag 1 Ox7E AX.25 Flag

8.2 APRS Message Type

,Inside the AX 25 Information Field is an APRS User-Defined Data Object See the APRS specification section 18.
Field Size Value Description
APRS Data Type ID 1 { APRS Data Type Identifier.
User ID 1 { Experimental User ID. Will need to be assigned a unique

user id if system proliferates.
KIDCQ Message Type 1 r,a or 1 KIDCQ Message types defined below.
KIDCQ Message Max 253 Defined below.

16

8 APPENDIX A: KIDCQ PROTOCOL SPECIFICATION 8.3 Pseudo Base-91 Ascii Encoding

8.2.1 KIDCQ RSA Printable Message Type (Message Type = r)

Field Size Description
CLD Serial Number 7 5 byte, pseudo base-91 ascii encoded, serial number.
Police Serial Number 4 3 byte, pseudo base-91 ascii encoded, Police smart card

serial number that generated the activation code.
RSA Signature 158 128 byte, pseudo base-91 ascii encoded, RSA Digital Sig

nature.

8.2.2 KIDCQ RSA Binary Message Type (Message Type = a)

Field Size Description
CLD Serial Number 5 Serial number of the tracking device.
Police Serial Number 3 Police smart card serial number that generated the acti

vation code.
RSA Signature 128 RSA Digital Signature.

8.2.3 KIDCQ RSA Public Key Message Type (Message Type = I)

Transmitting a digital signature over the air could be mis-construed as data secrecy or encipherment. During experimentation,
the public key used to verify the signature may not be widely available and someone who receives a signature message will
not be able to verify the signature.

To ensure that KIDCQ messages are not perceived as encrypted messages during experimentation (where the public key is
not widely known) it is strongly recommended that the public key is broadcast intermittently with digital signature messages.
Adhering to this method will ensure that anyone who hears the KIDCQ digital signature message will be able to verify the
signature with the over the air broadcasted public key.

Field Size Description
Exponent 1 RSA Public Key Exponent (integer value of 3 for now).
Modulus 128 RSA Modulus.

8.3 Pseudo Base-91 Ascii Encoding

The nominal method for computing the base-91 encoding of integers, according to chapter 9 of the APRS specification, is to
continuously reduce the n-byte integer value modulo 91 to produce a base-91 encode byte stream.

This method works fine for small integer values, however the RAM and processing requirements for big integers is too
great for a PIC microcontroller that must decode the base-91 integer encoding. So for the large integers within this message,
a slightly less space efficient version of the base-91 encoding is used.

1 base-91 byte can represent a 6 bit integer. Normally a "byte" is an 8 bit integer, so a single base-91 byte is not enough
to encode a single integer byte. Using 2 base-91 bytes to represent a single integer byte (similar to Hex encoding) is very
wasteful on space, since an n byte integer will expand to n*2 bytes.

It turns out that two (2) base-91 bytes can represent a 13 bit integer. So for larger integers, every 13 bits will be encoded
into 2 base-91 bytes. So N bytes will be encoded into ceiling(N * 16/13) base-91 bytes.

This will allow the PIC to decode the big integers in small pieces and avoid the time consuming big integer math.

8.3.1 Encoding Example

Encode the 3 byte integer: (hex) OxF4 Ox24 OxOO, (integer) 16,000,000.
The binary representation of the integer 16,000,000 is:
111101000010010000000000
pad the left side of the binary value with O's until size(binary int) mod 13 = O.
00111101000010010000000000
This gives 2 13-bit integers:
0011110100001 = 1953 and 0010000000000 = 1024
Notice that 1953 * 2 - 13 + 1024 = 16,000,000.
And perform base 91 encoding on these 2 integer values, as described by the APRS specification in section 9.
1953/91 = 21 remainder 42
1024 / 91 = 11 remainder 23
So following a decimal to hex conversion, the pseudo base-91 integer value will be encoded as:
(21 + 33), (42 + 33), (11 + 33), (23 + 33) = Ox36, Ox4B, Ox2C, Ox38

17

10 APPENDIX C: KlDCQ DESIGN DIAGRAMS

8.3.2 Decoding Example

Decode the following 4 bytes into an integer value: Ox36, Ox4B, Ox2C, Ox38.
Subtracting the decimal value 33 from each of the above bytes gives the decimal values,
21,42,11,23
Now convert to 2 13-bit integer values:
(21 * 91) + (42) = 1953
(11 * 91) + (23) = 1024
Finally, concatenate the bits to produce a decimal integer:
(1953 * 2' \3) + (1024) = 16,000,000

9 Appendix B: KidCQ RSA Public Key

Exponent
Ox03

Modulus
OxC2, OxFB, OxE3, OxCl, Ox68, OX6E, Ox9B, OX49, OxB2, OxBl, OX3A, OxDA, Ox87,
Ox80, OxE8, OX44, Ox22, OxAB, OxEE, Ox66, Ox94, Ox7E, OX9D, OxCI, Ox2S, OXC9,
Ox96, OxDS, OxD6, OxBS, OxA6, Ox86, OxOC, Ox39, OX74, Ox8l, OxB7, OX4E, Ox6C,
OX62, OX13, Ox6D, OxCA, OxF3, OxDB, Ox8E, OxBS, OX9F, Ox6C, Ox3B, OxFC, Ox7S,
Ox70, OX42, OxES, OX46, Ox4C, Ox3A, Ox9S, OX4F, OxSO, OxEA, Ox8S, Oxll, OxES,
Ox68, OxCS, Ox69, OX8D, Ox6D, OxDl, Ox26, OxE2, Ox97, OxEA, OXOD, Ox68, OxEB,
OxF8, OxEE, Ox89, OxSA, Ox84, Ox8C, Ox36, OxCF, OxAS, OxB8, OXOE, OxDS, OX43,
OX17, OxCB, OxSS, OxE2, OxEE, Ox77, Ox79, OxBF, Ox8C, Ox09, Ox79, Ox6S, OxCF,
OxFC, OxB9, OX44, Ox3F, OxA6, OxD3, OX2E, OX4l, Ox9C, OxAO, OxFl, OxF4, OX98,
Ox6C, OXCA, OxS9, OxEO, OxS3, OxDE, OxCl, Ox7A, Ox64, OxE6, OxES

10 Appendix C: KidCQ Design Diagrams

144.41l112

KidCQ speci8l APRS
p_t:1 eort"""ll
"odIYotlon rode"

Figure 4: KidCQ Prototype Device Block Diagram

18

Usage = Usage - 1;

Command: GenSig

PIN
KidCQ Device Serial Number

10 APPENDIX C: KlDCQ DESIGN DIAGRAMS

ICommand: GetlnfoICommand: Getlnfo Command: InitCard

o PIN
Serial Number
No. of Uses
Private Key Exponent

Private Key Modulus

Pre-Initialized \---__--=========_--j

ICommand: Getlnfo
() ~'"

/' e~~
o,e ~~

<:>",?> . <;-"?

."l'<?'''
~?>"

Figure 5: KidCQ Smart Card State Machine

19

~
<l:

13
o ~

~

~

8'
~
cJ
~
~
~
0.;
<l:

a

I .~"'"vee ~ sw,PBO--

~,
100

l:::
00

or;;
R2

0)
Res!

IK
 Cl

vee -0
"nTnn:.mlll<::r '"o.,

a:lResl
~oselleLJ<J ----~ '" III I

U?IUD E.:::
00MCLRNf'P OSCZlCL..KOIRA6 ~ ::l

,.,..- ROYTIOSOfTICKJ RmANO: ~ I I I I Cl'" ",,... ~~~~f'C(]>2 fWI~~~~----i a,. uDau Rcaeved (10m l'K-Xel
I~

=~~~~~L RAY~~ ~ -0:1'0 f.... prllUion Headn Pm Jf2 Tr-;C·X"
" RC~DO RAYAN4.0SSJI.. VDIN2

To bpllruion HCldfr I'ln ~ TNC·X ~L...!1........I RC6'TX/<X
~n- I
L-.1.L..I RC7RXIOT' 220' g

C1

~f-----
-=- Clip

• 120'

4 MHZ ::~~~ ~ III ! I ><:
XTAL R8111NTI ~

R8ltCP2 :....-l4 UMug (1lI"I CI'l rielS
~TDbpwlCln Heada POI ~I Th'C-X

RSWGM ~6
RB4~

!.-To bp:mnon Hcada Pm J(l TNC-X ~
vss R86'PGC ~

vss R87IPGD ~
 \0~

"7 pTCi8FiSl ~
::l
00
ti:

. T,lic
PICIRtlttr(actOlll!1lm

I
;-S~ l~N;;rrilif·- IR~ao;--' ---

! ,
A l _ _J , _

Jr5.m IlIW:m4 St1::et of I lIf I , Flic'- C'\ProlTolm~FilC"':'ii;;n.9:HDOC r o.;wnBY - --Mik.c Kl:mcdy

Q

N

