
Exploiting The Dynamic Flexibility Of Software Radio In FM

Broadcast Receivers

Declan Flood4>, Linda Doyle, Philip Mackenzie, Keith Nolan and Donal O'Mahony

Networks and Telecommunications Research Group (NTRG)

Trinity College, Dublin 2

IRELAND

'l1ooddk@tcd.ie http://ntrg.cs.tcd.ielswradio. php

Abstract - This paper demonstrates how the flexibility of software radio may be
exploited to optimise radio communications systems. It describes our
implementation of a software radio RDS (Radio Data System) receiver. Most
FM stations transmit a RDS signal in addition to their audio output. RDS
provides information about the current FM broadcast such as the program
name etc. RDS is very similar to the North American RBDS (Radio Broadcast
Data System). Our implementation of the receiver uses high level RDS
information to adapt itself. The objective is to improve the receiver's
functionality for the user and to reduce the computational load.

I INTRODUCTION

In software radio transceivers the lower level functions
such as channel filtering, modulation etc are implemented
in software. In software radio receivers an AID converter
is used to digitise the received signal as close to the
antenna as possible. Typically, there is only one stage, an
IF downconverter, between the antenna and processing
unit as shown in figure 1.

In general, software radios may be divided into two
classes based on what type of processing unit is used.
Reconfigurable hardware such as an FPGA or DSP may
be used to process the output of the AID converter. A
second class of software radio uses GPPs (General
Purpose Processor) such as an Intel Pentium [1].

Software radios implemented using GPPs have a number
of advantages over reconfigurable hardware approaches.
Software for GPPs may be written in easy to use high­
level languages such as C++. These languages allow a
faster development time than low-level DSP assembler
languages or hardware description languages such as
Verilog or VHDL. Software written in high-level
languages is portable; it does not need to be rewritten
when a faster family of processors becomes available.
Also, a GPP based software radio maximizes flexibility.
This flexibility is the focus of this paper. As research into

GPPs progresses their significant weaknesses such as high
power consumption will improve.

Output

Figure 1: A software radio receiver

By flexibility we mean both the parameters of the stages
within the system may be changed and the architecture of
the system may be changed. These changes may occur at
start-up or during operation.

The flexibility of the system may be exploited to tailor its
functionality to user demands or to minimise the use of
resources (computational load or power consumption).
The system may also have to respond to changes in the
channel (multipath effects and signal-to-noise ratios) or
government regulations (bandwidth and RF power
constraints).

This paper describes an example of exploiting the
flexibility of software radios. In this case a software radio
FM broadcast receiver responds to information provided

35

mailto:l1ooddk@tcd.ie

by RDS I (Radio Data Service). RDS is a data signal
transmitted by most FM broadcast stations in addition to
their audio output. It sends information such as the current
time and the name of the radio station etc [2]. Our
implementation of the receiver responds to this high-level
information to reduce the computational load on the GPP
and to improve the listening experience for the user.

Section II details the aims and specifications of RDS.
Section III describes our software radio implementation
of a RDS receiver. Section IV provides some examples of
how we have used high level RDS data to optimise lower
level functions. Section V concludes with reference to
other work in this area.

II RDS

RDS is a data signal transmitted by most FM broadcast
stations in addition to their audio output. The objective of
RDS is to improve the functionality of FM receivers by
providing additional information to users. This
information allows a range of applications such as
displaying the programme service name or correcting the
receiver's clock. It also facilitates more advanced features
such as paging of users or auto-tuning for automotive
applications. Auto-tuning information is used when the
received signal strength becomes low because the receiver
has moved out of the transmitter's range. RDS transmits a
list of alternate frequencies where the same radio program
is being transmitted. The receiver checks if the signal is
stronger on one of the alternate frequencies. This allows
users to travel without having to retune their receiver.

The RDS signal is frequency multiplexed with the audio
signals. The modulation bandwidth of FM transmitters is
90kHz but only 53kHz of bandwidth is required for stereo
signals. Space above 53kHz is used to transmit the RDS
signal. The RDS signal is transmitted on a 57kHz sub­
carrier. The modulation system used is D-BPSK
(Differential Binary Phase Shift Keying). Figure 2 shows
the output of the FM discriminator in a receiver. The
diagram shows the 'left plus right speaker' signal, as well
as the 19kHz pilot tone and the 'left minus right speaker'
signal used for stereo reception. The RDS signal has a
null at 57 kHz and a width of 4.8kHz.

t~.R.. +.... L.•..-.~ :.. RDSo lCJ!!I!l ItA. >
19 38 57

Frequency (kHz)

Figure 2: FM discriminator output.

I RDS is used in Europe and is defined by the EBU
(European Broadcasting Union) [3]. RBDS (Radio
Broadcast Data System) is the North American equivalent
and is defined by the National Radio Systems Committee
[4]. The two standards are very similar [5].

36

RDS has a data rate of 1187.5 bits per second. The bit
stream is divided into groups of 104 bits. Each group is an
entity in itself and has a particular purpose such as
transmitting a chunk of the program service name, clock­
time information, differential GPS information etc.

In traditional radios the output of the FM discriminator is
passed to stereo decoders and to a RDS demodulator Ie.
The stereo decoders generate the audio output. The RDS
demodulator IC provides a bit stream to a microprocessor.
The microprocessor performs group synchronization and
error correction.

III RDS IN SOFTWARE RADIO

We have developed a software radio test bed. The test bed
consists of both the hardware to collect data plus a
software I development environment that allows assembly
of software signal processing components. The hardware
consists of an antenna, RF front end and an AID
converter. The RF front end amplifies the RF signal and
downconverts it to an IF of 10.7Mhz. The AID converter
samples the IF signal, using bandpass sampling.

IRIS (Implementing Radio In Software) is a software
development environment allowing assembly of software
components to create software radios. It consists of a
repository of signal processing components plus a
software radio engine. XML documents describe a
software radio in terms the components required and their
layout. The software radio engine takes this description
and assembles the software radio using components from
the repository. It is important to note that the software
radio engine also allows the architecture of the system or
the parameters of the components to be altered during
operation. This ability to adapt is exploited in this paper
to optimise the radio receiver [6].

The software components required to implement an FM
broadcast receiver are shown in figure 3. The data
acquisition component controls the flow of data from the
AID converter to the PC. The channel extractor (mixer,
low pass filter and decimator) isolates the signal of
interest. An FM discriminator performs demodulation.
The spectrum of the FM discriminator output is shown in
figure 2. This signal is passed to two chains of signal
processing components. The first chain generates the
audio output using a low pass filter followed by
deemphasis and equalizer components. The second chain
generates groups of RDS data using a band pass filter,
costas loop and RDS decoder component.

from a radio station. Our implementation runs in real-time
on a 2GHz Pentium IV running Windows 2000.

_ Oi X
_..-. _ .. .1 _, ~

Audio Output RDS Data Output

Figure 3: IRIS components in a mono FM receiver.

A block diagram ofthe RDS decoder component is shown
in figure 4. An early-late gate synchronizer performs
symbol timing. A bit stream is generated using a symbol
decoder. An XOR function performs differential
decoding. Finally, a group synchronization algorithm
followed by an error correction algorithm (Meggitt
decoder) creates groups of RDS data.

Costas loop output

Groups of RDS Data

Figure 4: Block diagram of the stages inside the RDS
decoder component.

The output of the RDS component is a stream of error
corrected groups of RDS data. Each group is an entity in
itself and the type of payload carried is indicated by a 4­
bit group type code. Figure 5 shows some data collected

Figure 5: RDS data output.

IV EXAMPLES OF USING FLEXIBILITY

RDS was originally designed to improve the functionality
of receivers. However the combination of software radio
and RDS enables additional functionality. Here we
describe three novel ideas we used which improve the
functionality of the radio or reduce the computational load
on the GPP.

a) Adapting equalizer based on program type

The final stage in generating the audio output is an
equalizer as shown in figure 3. The equalizer allows users
to change the bass and treble settings to suit their own
taste. Users will have preferred settings for each type of
music they listen to. For example for jazz they may want
to increase the treble and reduce the bass.

RDS transmits a PTY (Program Type Code), this is a 5­
bit code indicating the type of program the user is
listening to e.g. jazz, rock, country etc. In our
implementation, the equalizer settings respond to changes
in the program type code.

b) Relaxingfilter roll-offrequirement

FM transmissions may be in mono or in stereo. The
spectrum of a stereo transmission is shown in figure 2. A
mono transmission is similar, but it does not have a pilot
tone at 19kHz or a 'left minus right speaker' signal
centred on 38kHz.

In this paper we consider a mono receiver only. In mono
receivers the audio output is generated using a low pass
filter. If the transmission is in stereo then a there will be a
pilot tone at 19kHz. In this case the roll off of the low
pass filter must be steep enough to ensure the pilot tone is
strongly attenuated, as shown in figure 6(a).

37

However if the transmission is in mono then the steepness
of the roll off may be relaxed as shown in figure 6(b).
This leads to a reduction of the number of taps in this low
pass filter and hence fewer operations are required to
implement the filter. Information from the RDS decoder
is used to determine whether the transmission is in stereo
or mono.

19kHz	 19kHz

(a) Stereo transmission (b) Mono transmission

Figure 6: Amplitude response of audio low pass filter

This reduction in CPU load may be used to throttle the
clock rate, reducing power consumption.

c) Removing deemphasis component/or speech

The noise rejection of FM systems is more favourable at
low frequencies than at high frequencies. To counter this
effect FM transmitters increase the amplitude of the high
frequency components of the audio signal prior to
transmission. This technique is called preemphasis.
Receivers have a complementary deemphasis component
to produce a flat overall frequency response.

While a deemphasis component is always of benefit to
audio quality, it is more important for music signals than
speech signals. This is because speech signals do not have
as many high frequency components. Also, a reduction in
audio quality is more acceptable for speech programs than
for music programs.

RDS includes a I-bit flag indicating whether the current
transmission is music or speech. Our implementation of
the receiver responds to changes in this flag. For speech
transmissions the IRIS system will remove the
deemphasis component. When a music transmission
restarts the deemphasis component will be reinserted in
the receiver chain.

V CONCLUSIONS
We have demonstrated how the flexibility of software
radio receivers may be exploited in FM broadcast
receivers.

When RDS was developed in the late 1970's it was not
anticipated that receivers could incorporate such high
levels of flexibility. Therefore the three examples given
provide only modest improvements in functionality and
computational load. This is because we are working
within the constraints of a pre-existing system.

Bose [7] describes a novel software radio data
communic~tion system. Parameters such as the

modulation scheme, bandwidth etc may be changed on a
per packet basis in response to user constraints such as
data rate etc. This leads to a significant improvement in
bandwidth used and power consumption.

While it is possible to implement flexible systems using
traditional design techniques, a software radio
implementation becomes preferable in maximally flexible
systems. For example, consider a system in which the
modulation scheme may be switched between BPSK,
DQPSK, 16-QAM and GMSK. A hardware
implementation will require four different demodulation
circuits. Another disadvantage of hardware
implementations is that all flexibility must be defined at
system specification. Upgrading deployed units requires
expensive firmware upgrades. Software radio units that
have already been deployed may be easily upgraded by
downloading new components or XML documents.

REFERENCES

[1]	 W. Tuttlebee, "Software-defined radio: facets of a
developing technology", IEEE Personal
Communications, April 1999.

[2]	 P. Mothersole, "Broadcast data systems: teletext and
RDS", 1992.

[3]	 CENELECIECU, "RDS Standard EN500067:
1998", 1998.

[4]	 National Radio Systems Committee, "United States
RBDS Standard", April 1998.

[5]	 National Radio Systems Committee, "RBDS versus
RDS - What are the differences and how can
receivers cope with both systems", January 1998.

[6]	 L. Doyle, P. Mackenzie. "A general purpose
processor component based software radio engine".
Second European Colloquium on Reconfigurable
Radio, Athens Greece, 2002.

[7]	 V. Bose, R. Hu and R. Morris, "Dynamic physical
layers for wireless networks using software radio".
International Conference on Acoustics, Speech, and
Signal Processing 200 I.

38

