
PerlAPRS
An Automated Control Application for APRS Networks

Richard Parry, P.E., W9IF
rparry@qualcomm.com

http://people.qualcomm.com/rparry

ABSTRACT
PerlAPRS is an application which can monitor both local TNC received APRS packets
and remote Internet APRS packets and perform an automated action based on criteria
specified by the user. The criteria that PerlAPRS uses is the callsign of the station and its
location specified as a Maidenhead Grid Square. Other requirements specified by the
user increase functionality of the program in real world applications. The actions
executed can be written in any language, but UNIX style shell scripts are ideally suited
for this purpose. Scripts can be developed to perform functions such as automatic
notification via email as well as logging. PerlAPRS is freely distributed under the GNU
licensing agreement.

KEYWORDS
Packet Radio, APRS, Linux, UNIX, Per1

INTRODUCTION

The Automatic Position Reporting System’ is one of the most popular facets of amateur radio today.
It is a marriage of several cutting edge technologies including the Global Positioning System (GPS),
amateur packet radio, and the global Internet. It incorporates satellite technology, wireless networks, and
both analog and digital communication. The applications to support the APRS protocol are also
sophisticated. They provide the user with an easy to use interface into the APRS world. Software such
as MacAPRS for the Apple Macintosh, WinAPRS for Windows 95/NT, and APRSdos for DOS
machines provide powerful and elegant solutions. With this software and support system, it is possible
to display any APRS network. Other support software for APRS includes the work of Steve Dimise,
K4HG, who extended the concept for the promulgation of APRS packets to the Internet with javAPRS.
In addition, Steve Boyle, KD6WXD; and Dale Heatherington, WA4DSY, developed APRS servers for
the Internet which allow users to remotely connect to the server and examine remote APRS networks.

These programs provide flexibility, functionality, and a highly visual means for tracking APRS
activity. However, they are passive in that they provide predominately monitoring functionality. They
do not provide the ability to control. For example, if you wish to know when an APRS tracker escorting
marathon runners reaches a specific location, you need more than monitoring capability, you need
control functionality. It is this ability that PerlAPRS provides.

1 The APRS formats are provided for use in the amateur radio service. Hams are encouraged to apply the APRS formats in the
transmission of position, weather, and status packets. However, APRS is a registered trademark of BobBruninga who reserves the
ownership of these protocols for exclusive commercial application and for all reception and plotting applications. Other software
engineers desiring to include APRS protocols in their software for sale within or outside of the amateur community will require a
license from him.

141

Execute cmdZ.sh up
2 times when KIGMP
is heard in DM12JV
and reset every 24
hours

Execute cmdl .sh up
3 times when
KCGVVT-9 is heard
DM12lT and reset
every 24 hours

Execute cmd4.sh up

to

in
\

to’
5 times when KE6PHB
is heard in DM12LT
and reset every hour

Execute cmd3.sh up to
3 times when KDGAZU
is heard in DM12KR
and reset every 3
hours

Execute cmd5sh up to
2 times when any sta-
tion is heard in
DM12LN and reset
every hour

Figure 1 San Diego, California

PerlAPRS is a program written in the Per1 computer language. Per1 runs on all popular computer

platforms today including MacOS, Windows3.1/95/NT, AMIGA, Unix, Linux, and many more. In
addition, since Per1 is compiled at run time, there is no need for a version precompiled or packaged for a
specific platform. Also, since all source code is included for PerlAPRS, the user may easily alter the
program to meet specific needs and is encouraged to do so. However, most users will find modifying the

shell scripts rather than the program should meet most requirements.
PerlAPRS examines incoming packets from an APRS network and executes commands when a

callsign and location match the criteria specified by the user. Location criteria is specified using grid

squares. For example, when KCSPVL enters grid square DM12LW, a computer command specified by
the user can be automatically executed.

142

for
the

Figure 1 shows grid squares overlaid on the city of San Diego, California, it will serve as the basis
the examples in this paper. The map shows several grid squares that are targeted for an action when
criteria specified in the caZlsign.dat file is met.,,

THE CALLSIGN FILE

When PerlAPRS starts, it reads the user’s callsign database file with the default filename of
caZlsign.dat. This file provides the list of callsigns that PerlAPRS is to search for. The file consists of
one or more lines of text as shown in Figure 2. A separate line (record) is required for each callsign.
Each line of the file is further broken into five fields, a separate field for each parameter.

KIGMP-10 cmd2.sh DM12JV 2 1440
KC6m-9 cmdl.sh DM12IT 3 1440
KDGAZU cmd3.sh DMl2KR 3 180
KE6PHB cmd4.sh DM12LT 5 60
* cmdS.sh DM12LN 2 60

Figtire 2 Example Callsign File

The first field indicates the callsign that PerlAPRS is to listen for. In the example, PerlAPRS will
listen for KI6MP-10, along with KC6VVT-9, KD6AZU, and KEGPHB. The asterisk character, shown
on the last line of the example, is a wildcard that means “any” callsign.

The second field indicates the command that will be executed when the callsign is heard. It can be
any computer command, however, as we will discuss later, shell scripts are powerful and easily
implement commands. In the example, cmd2.sh will be executed when KI6MP-10 is heard.

The third field represents the grid square in which the callsign must be heard. Returning to the
example, PerlAPRS is listening for KIGMP-10 in grid square DM12JV.

The fourth field is provided to limit the number of times the command is executed during an active
period. This parameter is necessitated by the repetitive nature of APRS packets. For example, if a
station continues to broadcast packets while located within the grid square, the command would be
executed each time a packet is heard. Since some APRS packets (e.g., mobile) are transmitted every few
minutes, in many cases it would be undesirable to have the command executed repetitively in a short
period. For this reason, the value is typically a small number (e.g., l-5). However, indicating a large
value will cause the command to be executed virtually without limit. Conversely, if one wishes to
disable execution, setting the value to zero essentially disables the command without removing it from
the database. In the example, the command, cmd2.sh, will be executed no more than 2 times during an
active period.

The last field is provided to allow the user to specify the active period. The active period is the time
expressed in minutes in which PerlAPRS is actively listening for the specified callsign. This is
important, since without a means of resetting the execution counter, it would be inconvenient to leave
the program running for an extended period (e.g., many weeks).

The following scenario may help to illustrate the need for specifying the active period. Assume we
wish to leave PerlAPRS running indefinitely. Also assume we don’t want to execute a command every
time a packet is heard since this could be hundreds of time during a 24 hour period. If we set the
execution counter to a small value, we will limit the number of times the, command is executed.
However, once that count is reached, commands will no longer be executed. The active period
parameter is therefore provided to allow the user to specify when the execution counter specified in field
4 is to be reset. Returning to our example, we see that a command will be executed no more than 2
times in a 24 hour (1440 minutes) period for KI6MP-10. At the end of the 24 hour period, the counter is
reset and the command can again be executed up to 2 times during the next active period.

143

When PerlAPRS begins it reads in the callsign file and shows the original information provided by
the user along with the conversion of the grid square to latitude and longitude*. To completely describe
the grid square, requires the latitude and longitude of the lower left and upper right points of the square.
These comer points are used by PerlAPRS to determine if the station is within the grid square.

Callsign
to listen

of station
for.

Grid square to
look for station

Active period in
minutes

Longi .tude of the
lower left corner of

Longitude of the
upper left comer of

[rparry@ lue aprs]$ perlAPR

Clgn Command ;&R D A T A ***/ thTxe* theT=
Exe Reset LwrLat LwrLon UprLat UprLon

1 KI6MP-10 cmd2.sh DMl2JV 2 1440 3252.0 -11715.0 3255.0 -11710.0
2 KC6VVT-9 cmdl.sh DMl2IT 3 1440 3247.5 -11720.0 3250.0 -11715.0
3 KDGAZU cmd3.sh DM12KR 3 180 3242.5 -11710.0 3245.0 -11705.0
4 KE6PHB cmd4.sh DMl2LT 5 60 3247.5 -11705.0 3250.0 -11700.0
5 * cx/.sh DMl2LN/ 6 0 323yll705.0 3235XL(700.0

Command to execute
when criteria is met.

Maximum number of times Latitude of the lower
to execute command during left corner of the grid
active period. square.

Latitude of the upper
left comer of the grid
square.

Figure 3 Output from PerlAPRS based on user’s callsign file

SHELL SCRIPTS

When an APRS packet is heard, the command specified by the user is executed. It is important to
emphasize that virtually any command can be executed, one is not limited to shell scripts. However,
they are simple to write, flexible, and powerful. Scripts should meet the needs of most users.
Alternatively, one can use Per1 scripts which are even more powerful, yet still easy to write.

How to write shell scripts is a subject all by itself, and for this reason only a few examples are
provided here. You don’t have to be a software engineer to write scripts, but a knowledge of UNIX
commands is important. The examples below were developed on a Linux system. These commands are
not expected to work on other systems without customization. They are provided here as examples for
illustrative purposes.

The following shell script will make a sound by sending the audio file chirp.wav to the audio output
port of the system.

! / b i n / b a s h
c a t /sounds/chirp.wav > /dev/audio

Shown below is a simple shell script to send email.

! / b i n / b a s h
e c h o “ M a t c h f o r KK5SU” 1 mail rparry@qualcomm.com -s "perlAPRS notification"

2 There is a common misunderstanding that for APRS applications latitude and longitude is specified as: degrees, minutes, and seconds
when it should be: degrees, minutes, and decimal minutes. For example, 100 degrees, 40 minutes, and 30 seconds is written as
10040.500 and not 10040.30.

STARTING PerlAPRS

PerlAPRS is invoked from the command line like most UNIX style commands. Note that in the
examples below, several command line arguments may be passed to the program which allow the user to
alter PerlAPRS defaults.

perlAPRS -h
perlAPRS -help

Display a he@ screen.

perlAPRS -v
perlAPRS -version

Display the current version of the software.

perlAPRS -s
perlAPRS -show

Normally PerlAPRS will not provide any output. The “show’
option allows the user to see the progress of PerlAPRS. The
show option will display only valid APRS packets that contain
a position (latitude and longitude).

perlAPRS -d
perlAPRS -debug

The &bug option forces PerlAPRS to display packets that do
not contain a valid position. This option is primarily for
program debugging purposes.

perlAPRS -d -s This example shows how PerlAPRS can be made to display
both packets with and without latitude and longitude
information.

perlAPRS -p /dev/cua2
perlAPRS -port /dev/cua2

The default port that PerlAPRS will open is “/dev/cual”.
However, you can specify an alternate serial port using this
option. For this example, a Linux serial port name is
indicated. For other platforms, consult the system’s
documentation.

perlAPRS -p www.wa4dsy.radio.org:14579 If an Internet address is specified, PerlAPRS will open a
perlAPRS -p sboyle.slip.netcom.com:l4579 socket to the address and obtain TNC data from the Internet.
perlAPRS -p www.nelh.radio.org34579 The examples listed are three presently know APRS servers.

The text preceding the colon is the host name. The number
following the colon is the port number which is fixed at 14579
for APRS applications

perlAPRS -p trip.tnc A third specification for the port option is not actually a port,
but a data file. If you have saved raw TNC packets to a text
file, PerlAPRS will open the file rather than opening a serial
port or an Internet communication’s socket. This last variation
of the port command is included for completeness, its main
purpose is to allow PerlAPRS testing using known packets.

perlAPRS -f callsign2.dat If a commandfile is not specified on the command line,
PerlAPRS will use the default filename caZZsign.dnt.
However, as shown in the example, the user can force an
alternate command file to be called using the -f option.

perlAPRS & This example shows how most users will run PerlAPRS. In
this example, PerlAPRS will not show any output. It is also
run as a background process by adding the ampersand
character (&).

145

HOW IT WORKS

Figure 4 shows a sample output from PerlAPRS with the “-s” (show) option on. When a packet
arrives, the callsign of the originating station is extracted along with the station’s latitude and longitude.
This information is then compared with each callsign in the database created by the user. If a match is
found, the command is executed.

The first line in the example below shows a packet from originating station KD6AZU. PerlAPRS
extracts the callsign, latitude, and longitude, and displays them on the line following the packet. Since
this is a valid APRS posit packet, PerlAPRS will search the callsign database looking for a match for
KD6AZU. As shown in the example, the first two attempts at a match fail. The third comparison is a
match shown in bold print for illustrative purposes. The command, cmd3.sI2, is then executed and the
execution counter is incremented. Note that the first line of the match included the time that the packet
was heard along with the maximum execution count specified by the user (e.g., 3). The second line of
the match shows the time that the execution counter will be reset, the present value of the counter (e.g.,
1) and the name of the execution command. When a second and third APRS packet arrives from
KD6AZU, a match occurs and the command is executed again. When the fourth packet arrives, the
command is not execution since the maximum execution count has been reached. No additional
matches for KD6AZU will cause command execution. However, by the time the fifth packet arrives, the
execution counter has been reset by the timeout and command is executed again.

Packet= KD6AZU>APRS,KD4DLT-7,N4NEQ-2,WIDE* :@O42327/3243.7ON,'11707.7OW/O
KDGAZU 3243.700 11707.700

- KIGMP-10 DM12J-V
- KCGVVT-9 DMl2IT
* KD6AZU DM12KR Sun Aug 10 15:56:13 1997 3

Sun Aug 10 15:57:13 1997 1 cmd3. sh
KE6PHB DMl2LT

* DM12LN
Packet= KD6AZU>APRS,KD4DLT-7,N4NEQ-2,WIDE* :@O42327/3243.7ON,'11707.7OW/O

KD6AZU 3243.700 11707.700
- KI6MP-10 DMl2JV
- KC6VVT-9 DMl2IT
* KD6AZU DM12KR Sun Aug 10 15:56:23 1997 3

Sun Aug 10 15:57:13 1997 2 cmd3.sh
KE6PHB DM12LT

* DM12LN
Packet= KD6AZU>APRS,KD4DLT-7,N4NEQ-2,WIDE* :@O42327/3243.7ON,'117O7.7OW/O

KD6AZU 3243.700 11707.700
- KI6MP-10 DMl2JV
- KC6VVT-9 DMl2IT
* KD6AZU DMlZKR Sun Aug 10 15:56:34 1997 3

Sun Aug 10 15:57:13 1997 3 cmd3.sh
KE6PHB DMl2LT

* DMl2LN
Packet= KDGAZU>APRS,KD4DLT-7,N4NEQ-2,WIDE* :@042327/3243.70N/11707.7OW/O

KDGAZU 3243.700 11707.700
- KIGMP-10 DMl2JV
- KcGvv'r'-9 DM12IT
* KD6AZU DM12KR Sun Aug 10 15:56:44 1997 3

Sun Aug 10 15:57:13 1997 3 cmd3.sh
KE6PHB DMl2LT

* DMl2LN
Packet= KDGAZU>APRS,KD4DLT-7,N4NEQ-2,WIDE* :@042327/3243.7ON,/11707.7OW/O

KD6AZU 3243.700 11707.700
- KIGMP-10 DM12JV
- KC6VVT-9 DMl2IT
* KD6AZU DM12KFt Sun Aug 10 15:57:14 1997 3

Sun Aug 10 15:58:14 1997 1 cmd3.sh
KE6PHB DMl2LT

* DMl2LN

Figure 4 Output from PerlAPRS

146

MAIDENHEAD GRIDS

PerlAPRS relies on the use of grid squares to specify location. It accepts grid square parameters in 2,
4, or 6 letter formats. A 2 letter grid square covers such a large geographic area that the entire United
States can be described in only 8 grid squares. A four letter grid square is smaller, but still represents a
very large area (approximately the size of Connecticut). The 6 letter grid square is much smaller and is
well suited for many applications in metropolitan areas.

It is not possible to describe the area of a grid square for a given format (e.g., 2,4, or 6 letters) since
they vary with their location on the earth. To illustrate the point, Figure 5 shows the size of a 2 and 4
letter grid square for the northern and southern portions of the
grid square size occur between the poles and the equator.

United States. Ei 3-r larger variations in

70 mi. (Northern US)

I 90 mi. (Northern US)’

124 mi. (Southern US)

6 Letter Grid Square

TLixszzd
4.8 mi. (Southern US)

Figure 5 Grid Square Comparisons

Note that only the longitudinal distance varies between the southern and northern portion of the
United States. The reason for this apparent anomaly stems from the fact that lines of latitude are parallel
to each other and therefore separated by a constant distance. Lines of longitude are not parallel, they
meet at the poles and are farthest apart at the equator.

CONCLUSION

PerlAPRS was developed to expand the usefulness of APRS to automated unmanned operations. It
is an application that should prove useful in circumstances that require a specific action to a predefined
packet specification. Using shell scripts or other languages developed by the user in conjunction with
PerlAPRS should provide the framework for developing and extending APRS to many unique
applications.

ACKNOWLEDGMENT

Thanks to Bob Bruninga, WA4APR; for permission to use the APRS trademark. Special thanks also
to Keith Sproul, WU2Z; Mark Sproul, KB2ICI; and Steve Dimise, K4HG; for their pioneering work in
this area.

3 See ARRL web page listed in the bibliography for a more detailed explanation of this topic.

147

SYSTEM REQUIREMENTS

Linux was the development platform for PerlAPRS, however, it will work on any platform that
supports per1 version 5.002 or later. In addition, since Per1 is available on virtually every popular
computer platform, PerlAPRS should be able to be implemented easily. Any limitations are more likely
to be with the platform’s ability to support shell scripts. However, as emphasized in this paper, any
computer language can be used to developing commands.

DISTRIBUTION

PerlAPRS is a freeware program available under the GNU General Public License, Version 2, June
1991, Free Software Foundation, Inc. 625 Massachusetts Avenue, Cambridge, MA 02139. It may be
downloaded from the author’s home pages at: http://people.qualcomm.com/rparry/perlAPRS.
Further information regarding the necessary files to download and system requirements are included
there.

BIBLIOGRAPHY

I .
2 .

3 .
4 .

5 .

6 .
7 .
8 .
9 .

Bruninga, Bob, “Automatic Packet Reporting System (APRS),” 73, December 1996, pp. 10-19.
Dimse, Steve, “javAPRS: Implementation of the APRS Protocols in Java,” ARRL and TAPR I.%
Digital Communications Conference Proceedings, Seattle, Washington, September 1996, pp. 9-
14
Fo;d, Steve, “Where Am I,” QST, April 1994, pp. 86-88.
Horzepa, Stan, “APRS Tracks: RELAY, WlDE, and Other Paths,” Packet Status Register, Fall
1996 - Issue #64, pp. 30-3 1.
Horzepa, Stan, “APRS Tracks: Alias Envy,” Packet Status Register, Summer 1996 - Issue #63,
pp. 25-26.
Horzepa, Stan, “APRS Tracks,” Packet Status Register, Spring 1996 - Issue #62, pp. 16-17.
Horzepa, Stan, “Getting On Track with APRS,” American Radio Relay League,Newington, CT.
Parry, Richard, “Position Reporting with APRS,” QST, June 1997, pp 60-63.
Wilson, Mark, “QST Compares: GPS-Compatible TNCs,” QST, October 1995, pp. 68-71.

WEB SOURCES

1. The ARRL web page http://www.arrl.org/locate/gridinfo.html provides an excellent source of
information on Maidenhead grid squares. The page also allows one to interactively determine a
gird square from the latitude and longitude provided by the user.

2. To join the APRS mailing list, send email to listserv@tapr.org with subscribe aprssig
FirstName LastName in the body of the message.

148

