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Abstract

Conventional linear and non-linear receivers are generally ineffective in detecting direct-sequence
spread spectrum (DS/SS) signals if the spreading sequences are unavailable. An investigation into
using correlation-based processing is reported showing that the cyclostationary property of DS/SS
provides detection capability. Finally we describe with results an emerging technique based on
higher-order statistics where triple correlation analysis is used, leading to the detection and
estimation of DS/SS length and its code generating function go.

1 . Introduction

Modern civil
complex and
covert signal

and military electronic communication systems are becoming ever smarter, more
in some cases also very difficult to intercept because the nature of the design leads to a
structure. In fact some transmitted waveforms are intentionally designed to make the

detection process virtually impossible. Such low-probabilities-of-intercept (LPI) signals have very
wideband  extremely low power spectral density signatures based on a hidden code structure;
moreover they can operate in a complex radio environment of high noise, interference, jamming and
other co-channel signals.

A particularly difficult threat signal to intercept is direct-sequence spread spectrum (DS/SS) and in
this case the problem is exacerbated when such systems operate in multiple access mode using code
division multiple access (CDMA). Moreover, if the pseudo-noise spreading codes are very long and
the intercept window is short including an unknown number of aperiodic data modulations then
standard signal processing methods based on second order statistics are severely limited.

State of the art techniques for communications signal detection which are based on second-order
(i.e. variance) spectral processing are considerably limited by ‘phase blindness’ and the inability to
easily separate out wanted signals from background noise[ 11. Our study, however, is focused on
higher-order statistical processing which specifically uses the cyclostationary signal property but is
combined with the suppression of Gaussianity [2,3] in order to improve the SNR of the detection
process. This was the key motivation for our attack on the problem of detecting DS/SS using
correlation analysis and also spectral processing for detecting CDMA and chip-code
characterisation respectively. The paper discusses the theory of triple correlation function analysis
as applied to the detection of DS/SS PN chip code sequences in some detail and then describes the
various methods which have been investigated for estimating the basis code polynomials of DS/SS
signals in the presence of channel noise. Attention is given to the importance of the doubling
technique which improves SNR and reduces the dimensional@ of tcf characterization.
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2 l

The proposed detector
correlation analysis,
HOMIHOS  techniques

Higher-order moment signal processing techniques

for covert DUSS signals uses third order cumulants in the form of triple
bispectral processing and an associated characterisation process[4].
should be better able to exploit the non-gaussian cyclostationarity of the

signal against the channel noise and interference. For example, the shift-and-add property of the m-
sequences[5],  i.e. Z.&U, = uq, where @ is binary addition of sequence elements, with an equivalent
polynomial representation,

leads to the delta function response for the periodic autocorrelation function (ACF)
C&) = E[v(t)v(t  + T)] and this ACF is no more than the second order cumulant in HOM terms.

Higher-order cumulants simply extend the averaging process by considering additional time-shifted
versions of the same m-sequence signal. In particular, the third-order cumulant or triple correlation
is defined as

cxuc(q,  %) = E[v(t)v(t + q)v(t + z,)]

where 21 = pT, and z2 = qT, for Cxuc sampled at the chip rate l/T, Hz. In practice, m-sequences use
the values + 1 rather than 0 and 1: (O,l)-+( 1,-l). The previously defined binary addition of
sequences, 0, is equivalent to multiplication, *, in this new domain.

3 a Triple correlation of complete m-sequences

The discrete version of Cxuc(zi,  z2) is evaluated as

c(p9q) = ~~~(+/7(i)yy(i)
fd i=j

where vi(‘) = 1 if ~~(5, = 0 and -1 if ui(i) = 1, i denoting the i-th element of the sequence. By the

shift and add property, for certain (p’, q’), uP’Bu,~ =u, and it follows that Vi, vP#v~{iJ  = v(i). For
those pairs:

1 L

C(p’,q’) = +x[v(i)]* = 1.

For other (p, 4) pairs, vP*v4 = vP where vs #v but is an m-sequence by field closure, in which case

C(P,q) = $v(i)v.&) = -l/ L.
i=l

Thus the shift and add property results in C(p,qJ  peaks at locations for which a@ + a4 = 1. Each
peak at (p : q 3 is mirrored at (q : ~3, as a”+ aP’= 1. Also, because of the existence and uniqueness

of a q’for eachp’in the range 1 5~‘: q -‘< L-l, there is exactly one peak in each row and column
between 1 and L-1, a total of L-l peaks.

In the original equation for C(p,q),  v,(i) = v(i+p) and v,(i)=v(i+q), i.e. those sequences are advanced
in time or shifted to the left (LS). There is a corresponding delayed or right-shifted (RS) version of 37



C. Substituting i+q=n and assuming L>q+rO,  v(i+q)=v(n), v(i+p)=v(n-(q-p))  and v(i)=v(n-q).
Thus C(p,q) may be written in terms of RS versions of v:

C(P47)=  ~~V(~~-,(~)V-~,-,,(~)
n=l

WI

[LSI

For each peak at (p,q) there is a corresponding peak at (L-q, L-(q-p));  reflections are also peaks.
E.g. as sequence a ,with  generating polynomial gca =X5+2+1,  (L=3 1) has peak (p,qj =( 1,18),  it
also has peak (13,14);  (18,l)  and (14,13)  are also peaks as shown in Fig 1.
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Fig 1. Coset summing for partial tcf [45]

4 . Determination of gm from triple correlation peak locations

The theory developed so far assumes the m-sequence length L is known. In particular, knowledge
of L is necessary to evaluate the triple correlation C(p, q). However, there is evidence that
sufficiently long partial m-sequences produce good estimation of peak locations. L may be derived
from the peak locations

(i, j), (2i, 2j), . . ., (2ki, r) for i < j
Assuming the last pair is the first for which r < 2kj, r = 2kj mod(L), or L = 2kj - r. As an example,
the pairs (1, 18),(2,  5) would produce L = 36 - 5 = 31. As peaks may be displaced, several such
se uences  should be examined.
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If L is known, it is possible to determine g(q, and thus the tap weights of its LFSR, from a single
triple correlation peak location. This follows from the fact that, for a given L, different primitive
g(a produce no common peaks.

As an illustration, consider the m-sequences of length 31 generated by g(y) = X5 + 9 +I (45
octal). If, for example,as shown in Fig 1, the peak location (1, 18) is known, the following peak
locations may be predicted:

(1, 18>,  c&5), (4, lo), (8, w, (169 9).
From the one peak such as (2,5) we can derive g(I:

a2 4-a’ =13as =a*+1 *a’+a*+l=O.

1
Thus a is a solution of g(x) = 0, where g(L must be of order 5 and include 1:

5 0 Coset summing for better detection

Although the effects of noise may be reduced by averaging the tcfs from several short signal
samples, this process is computationally costly and assumes persisting m-sequences. Coset
summing is an alternative or complementary technique which improves SNR and reduces the
dimensionality of tcf characterization. It may lead either to powerful multivariate discrimination of
fragments of known m-sequences or to the blind determination of an m-sequence from the detection
of a single tcf peak.

Coset summing involves searching NXN partial tcfs for peaks by using the doubling
Property of peak locations. Each feasible tcf location is visited, beginning
@,4)=(1,2),(1,3),..*,(2,3),(2,4),..., and the following sum of non-repeated tcf values calculated:

s = c’(p,q)+ c’(2p mod L, 2q mod L)+...+ C’(2’p mod L, 2’q mod L)

wherep=2**p  mod L and q=2ti1q mod L. Each doubled location, (2’~ mod L, 2’q mod L) for l< i <
r, is excluded from the future search as its coset is represented by the initial location (p,q). Thus
each coset present in the partial tcf is represented by a single peak, called the coset leader. Clearly,
all the peaks of a coset will not generally be present in the partial tcf. When doubled locations lie
outside the partial tcf (p ;q WV) no contribution is made to the sum but doubling is continued, and
further values for locations within the partial window summed, until the original (p,q) results.

Coset summing is illustrated in Fig 1, the tcf of a 3 1 length m-sequence [45].  Assuming only a
16x16 partial window is available, the peak at (2,5) would be the first peak encountered in the
search. The other coset peaks added would be at (4,lO)  and (16,9):  doubling would generate the
other coset members (8,20)  & (1 ,18) lying outside the partial window. However, the peaks at (4,lO)
& (16,9)  would be excluded from the search and their contributions included at (2,5), the coset
leader.
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Clearly, in addition to reducing dimensionality,  the use of coset sums of available tcf values will
improve the detectability of actual peaks. Actual peaks of partial tcfs of m-sequences in noise have
average values of 1 while the average non-peak values are -l/L. If the search begins with a non-
peak location, other locations generated by doubling will also be non-peak.. Thus all the coset sums
will consist of exclusively peak values or exclusively non-peak values. T.hese  summed values may
be tested against a threshold to decide whether they arise from a coset of actual peaks.

6 0 Conclusions

Triple correlation analysis provides a powerful means of searching for and detecting the presence of
covert wideband  signals such as DS/SS.  The results show that the tcf is an excellent basis for
detection and identification of m-sequences. The doubling process (coset sum)improves the
detectability of actual triple correlation peak and reduce non-peak values: However higher-order
statistical processing can extract more information than that conveyed by second-order power
spectral density or autocorrelation function.
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