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Abstract

It is well known th.at nonlinear distortion over a communication channel  is now a significant
factor hindering further increase in the attainable data rate in high-speed da.ta transmission. Since the
received signal over a nonlinear channel is a nonlinear function of the past values of the transmitted data
pulses, it is not surprising tihat the linear equalizers do not work efficiently. We propose a new nonlinear
equalizer that uses a new type of neural network called Fuzzy CMAC which combines the advantages of
both fuzzy logic and CMAC (Cerebellar Model Arithmetic Computer) networks. The learning speed is
an order of magnitude faster than conventional neural nets. Moreover, human expert knowledge in the
form of linguistic rules can be easily incorporated into the scheme.

1. Introduction

In practical digital communications systems designed to transmit at high speed over band-limited
channels, a succession of Ipulses  transmitted through the channel at rates comparable to the channel
bandwidth are smeared to the point that they are no longer distinguishable as well-defined pulses at the
receiving terminal [ I]. This is due to several factors. First, linear amplitzde  and delay  distortion caused
by the nonideal  channel frequency response characteristic makes the symbols overlap. Also the delay
distortion makes the zero crossings no longer periodically spaced. Second, signals transmitted through
telephone channels are subject to other impairments such as nonlinear distortion, frequency offset, phase
jitter, impulse noise, and thermal noise. Nonlinear distovtion in telephone channels is due to the
nonlinearities in amplifiers and compandors used in the telephone system. This type of distortion is very
difficult to correct. A small fieqzrevrclv  offiet  (< 5 Hz) results from the use of carrier equipment in the. c
telephone channel. Such an offset cannot be tolerated in high-speed digital transmlission  slystems  which
use synchronous phase-coherent demodulation. The offset can be compensated for by the carrier
recovery loop in the demodulator. Phase jitter is a low--index frequency modiulation of the transmitted
signal with the low frequency harmonics of the power line frequency (50 or 60 Hz). Phase jitter poses a
serious problem in digital transmission of high rates. However, it can be tracked and compensated for at
the demodulator. /mpulse  noise  is an additive disturbance. It comes from the switching equipment in the
telephone system. 7’lzerrnal  noise is also present at levels of 20 to 30 dB below the signal.

25



In this paper, we will deal with the signal distortion due to the linear and nonlinear channel
characteristics and additive noises. Since frequency offset and phase jitter can be remedied by some
other means, we will not discuss these impairments.

The popular approach to channel equalization is to model the channel as a linear finite-impulse-
response (FIR) filter. Then an adaptive filter is used to cancel the distortion caused the channel. Various
weight adjustment schemes such as LMS (Least Mean Square), RLS (recursive least-squares), and lattice
algorithms are used to tune the filter parameters [l] [2]. However, these schemes can only handle linear
distortions. It is well known that nonlinear distortion over a communication channel is now a significant
factor hindering further increase in the attainable data rate in high-speed data transmission. Since the
received signal over a nonlinear channel is a nonlinear function of the past values of the transmitted data
pulses, it is not surprising that the linear equalizers do not work efficiently. Therefore, an efficient and
effective equalizer should posses certain capability that can learn the nonlinear behavior of the channel
characteristics. In [4] and [6], polynomial adaptive filters were developed for nonlinear channel
equalization. In [S], multilayer perceptrons  have been used as equalizers. In [3], fuzzy adaptive filters
were used to cancel the nonlinear distortion.

Since nonlinear channels cover many kinds of nonlinear distortions, it is hard to single out one
method that is dominant. Hence it is necessary to develop new nonlinear equalizers and this is the goal
of this paper. We propose a new nonlinear equalizer that uses a new type of neural network called Fuzzy
CMAC which combines the advantages of both fuzzy logic and CMAC (Cerebellar Model Arithmetic
Computer) networks. The learning speed is an order of magnitude faster than conventional neural nets.
Moreover, human expert knowledge in the form of linguistic rules can be easily incorporated into the
scheme.

The paper is organized as follows. In section 2, we will introduce some backgrounds on Fuzzy
CMAC. Then we will describe the channel equalization problem and our approach in section 3.
Simulation results will be included. Finally, conclusions will be drawn in Section 4.

2. Fuzzy CMAC Neural Network

2.1 Comparison of a CMAC Network with a Fuzzy Logic Controller (FLC)

Two decades ago, a unique neural network model called a Cerebellar Model Arithmetic
Computer (CMAC) was established by J. Albus  [8] based on a model of the human memory and
neuromuscular control system. The CMAC is a perceptron-like associative memory that performs
nonlinear function mapping over a particular region of a function space. A CMAC network has the
capability to learn an unknown nonlinear mapping by examples, and to reproduce multiple outputs in
response to multiple inputs. Because of its table look-up mechanism, and its hash-code based mapping
structure, CMACs are able to cope with high dimensional input/output applications without severely
deteriorating their processing speed and performance.

Fuzzy set theory was initially proposed by L. Zadeh as a tool to model the imprecision that is
inherent in human reasoning, especially when dealing with complexity. The fuzzy theory has seen its
most widespread application in the area of control. Controllers using control laws specified with fuzzy
set theory (or fuzzy logic) are known as fuzzy controllers. Such controllers are easier (relative to non-
fuzzy controllers) to design, especially in cases where the laws are non-linear and the systems are
complex.



A fuzzy logic controller consists of an input firzzification  module, a set of ~LVZ~  control rules
based on which the approximate reasoning technique is used to make a control decki& and all output
defuzzification module.

Fuzzy logic controllers differ from classical math-model controllers in that they do not require an
explicit mathematical model of how control outputs functionally depend on control ikputs. Also t‘uzzv
logic  controllers allow designers to incorporate human knowledge into the control decision making
pricess.

The advantages of a CMAC over a FLC are:
There are very eff?c:ient  learning laws to update the values of weights based on experience and
examples.
There is a random mapping mechanism to reduce the physical memorv requirement for multipleJ
input and high resolution applications.
There exist efficient input encoding schemes for high dimensional input vectors.c

The advantages of a FLC over a CMAC are:
It is possible to interpret the implication of weight values using linguistic labels.
The membership funictions  and the firing strengths contain additional information as to how close
the input vector is to each linguistic variable. Therefore the number of input space partitions ma\-4
be smaller to achieve the same generalization and output smoothness.
The fuzzy rules can take a variety of forms while only  numeric values can be associated with4
CMAC associative memory locations.
There are many methods to construct a fuzzy control knowledge base, such as expert’s experience
and knowledge.

In the next section. we will propose a new neural network called Fuzzy CMAC which combines
the advantages of both fuzzy logic and CMAC network.

2.2 Fuzzy CMAC Architecturec

In this section, we present the novel concept of a Fuzzy CMAC neural network. This novel
network was developed by Intelligent Automation Inc. (TAI). The idea is to combine the advantages of
the FLC and the CMAC (Cerebellar Model Arithmetic  Computer) and elilminate  the respictive
disadvantages of the two. IA1 has successfully applied this network to active vibration control, finger
print analysis, and chaotic time-series prediction. Fig. 1 illustrates the architecture of the Fuzzv CMAC.
The Fuzzy CMAC inherits the preferred features of arbitrary function ap,proximation.,  learning,  arid1
parallel processing from the original CMAC neural network, and the capabilitv of acquiring andi
incorporating human knowledge into a system and the capability of proceslsing  information based on
fuzzy inference ru es from fuzzv  logic. The combination cifa neural network and f~lzzv logic vields anJ J i
advanced intelligent system architecture.

At the input stage, the Fuzzy CMAC uses the f’uzzification  method of a FLC as its input
encoding scheme. Fuzzy rules can be assigned to each associative memory cell. These rules may nots
necessarily have a crisp consequent part. The output generation uses a def’u zzification approach which

sums weighted outputs of the activated rules based on the firing strengths si. The o\:rerall  mapping
function of a Fuzzy CMAC can be formalized as

.\I
Z(Zl)  = &yJ (\2. I )

p=l
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where u = [u, u2 . . . . UJ is the input vector. M?,, , p = 1, 2, .., M, are the weights of the network.

A4 = jl if N = 1 and ~=~~i  -Q&Q + j, , for N > 1. i = I,2 ,..., Iv. rni is the number of knot
iz2 I=1

points on the ith input dimension. The jith knot point on the ith input dimension is denoted as ui ,. ,
l I.

J -
i- 123 9***9 mi ’ ‘p 9 p = 1, 2, . ..$ M, are the firing strength of the fuzzy rules. They are calculated as

3 = P, .,j,  (u,)*/uz  j, (“2)*“‘**P, jv (‘,II? ! W)

where * denotes the T-norm operator. There are many types of T-norms such as the min and product
operators. Throughout this paper, we choose the T-norm as the product inference method since it is easy
to implement. Hence, (2.2) can be written as

N

�P = p 1 ☺, (�1  )Pl,,jz  (�I)* l l l p ,~ ,,jh!  (U,> = 17  /u,  ,,i,  (Ui)
(2.3)

i=I

-where  /u i (ui) is the jilh membership tinction  of the ith input.I ‘. ,
A Fuzzy CMAC neural network combines the advantages listed for CMAC and FLC. One

desirable feature the Fuzzy CMAC inherits from the CMAC model is that the receptive field of the
sensing element has limited width. This means that there are only a small number of sensing elements to
‘be activated for any sensor reading. In conventional neural nets such as those based on multiple layer
feedforward structure and backpropagation learning algorithms, all neurons are required to perform
computation in order to compute the forward mapping or to perform learning. In Fuzzy CMACs,
operations are localized and only a small subset of all the neurons need to be computed. Our initial
comparisons of fuzzy CMACs with conventional neural nets show orders of magnitude increase in the
speed of both function mapping and learning for typical problems on conventional computational
hardware. Comparing the activating function of CMAC to the linguistic variables in the Fuzzy CMAC,
one can view the activating function as the membership function of the Fuzzy CMAC input variables.
Fig. 2 shows the comparison.

In terms of the control knowledge rule-base, the proposed Fuzzy CMAC differs from Albus’s
CMAC [S] in that the weight values can be interpreted as knowledge rules through linguistic variables.
This feature permits us to validate a learned Fuzzy CMAC in terms of the reasonableness of the learning
results. This unique feature also provides a practical channel for knowledge acquisition. A knowledge
base (a set of rules) can be established based on the learning results of a Fuzzy CMAC.

On the other hand, the Fuzzy CMAC distinguishes itself from Zadeh’s fuzzy controller in that it
is able to build a learning control system starting with an empty knowledge base. The linguistic
knowledge of human experts can be incorporated into these rules. Based on the initial knowledge base, a
self learning algorithm is employed to modify the existing rules in order to improve the system
performance.

2.3 Fuzzy CMAC Mapping Using B-Spline Membership Function

The fuzzy membership function can be chosen with considerable freedom, and this freedom can
be used to optimize system performance. Membership functions should be computationally simple,
flexible, and continuous in order to optimize the Fuzzy CMAC system design. We have compared many
candidates for membership function, such as bell shape Gaussian functions, sinusoidal functions, etc.,
and we believe that the B-Spline function family possesses certain preferred properties that make them
well suitable for the Fuzzy CMAC membership function. Let the jjth knot point on the ith  input dimension



be denoted as II.f./ * ‘Throughout this paper. we use the third order B-spline  function. The firing strengthc
of a fuzzy membership function ,U(ZL) is the value of ithe  function /r at the input LI e For example, if u

lies in the range of ,u,.~
[ ’ l(zi)Y~i.j  (LI)] * then the firing strength of the jilt’  membership function will be

11 - lli ; -2 iii ; - 25
s; i = --~I’-----~

lli.,.,+,  - -  11
+ --____

ci - lf, j -,
- 1- - - - -  - --------___ . (2.3)

The third order B-Spline membership functions have the following desirable properties:

(a) Positivitv: &, (L$) > 0 for all L1; E Lfi i -3’2fi  I’ .d / [ - I * I
(b) Compact support: kc; ; (~4;) = 0 for all U; not belonging to ~1; E lli ; -3, 21,. ji * 1
(c) Normalization: C/fiqj  (‘i) = 1 for any U,.

(d) Derivatives exist and can be recursively calculated.

It should be noted that the positivity property is not that important in Fuzzy C’h4A.C’.  However, the other
three properties require more attention. The existence of derivatives is very important for manv  real-t-imt‘
control applications where the tracking errors are back-propagated through the Fuzzy CMAC.  Compact
support property means  that? for a given input vector, only a small number o:t’ the membership functions
will be fired and need to be computed. For our thirmd  order B-spline function, only 3 membership
functions will be activated in each input dimension. Thus only a small number of weights need to be
updated. In other words, our Fuzzy CML4C  enjoys the localization property which represents a
considerable amount of’ computational savings when compared to a general feedforward
backpropagation neural network which must calculate all the network weights whenever there is a new
input vector. The smoothness of the B-spline functions also give the Fuzzy CMAC the generalization
property which means similar inputs will give similar outputs. The normalization property will help in
simplifying the computations. Since the output of a Fuzzy CMAC can be expressed as

I \  =li 1 -I
=l /.,=I  i=l

it seems from the above formula that the calculation of the numerator as well as the denominator of the

~(21)  both involve a summation of M (= r1311,  ) terms, each in turn requires N multiplications. By using
. .

the normalization property of the B-spline membership function, the calculation of the Z(U) becomes
much simpler. This fact is proven in the following theorem.

Theorem 1
Because of the normalization property of B-spline function, the denominator in (2.1) always

takes the value 1, e.g.

Proof: See [7].
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2.4 Fuzzy CMAC Universal Approximation Theorem
We have proven the following universal approximation theorem for the Fuzzy CMAC  neural

network. The theorem essentially guarantees that the Fuzzy CMAC neural network can uniformly
approximate any nonlinear continuous function over a specific compact region to any degree of
accuracy. The universal approximation theorem provides us with justification for applying the Fuzzy
CMAC to almost any nonlinear system modeling problem.

Theorem 2
For any given real continuous function g(u) on a compact set U < RN, and arbitrary E> 0, there

exists a Fuzzy CMAC neural network z(u) in the form of (2.1) such that

SUP~+4 -ml < 6 for vucu (2.7)

where u = [ U, u2 . . . . uN]’ is the input vector; w(jl , j2,. . . , j,;) are the weights of the Fuzzy CMAC;

and pi j. are the membership function values.

Proof: See [ 71.

2.5 Learning Algorithm for the Fuzzy CMAC

The conventional CMAC learning process is designed so that the correction initiated by an
output error is evenly distributed among all weights that contribute to the output, regardless of their true
proportion of contribution to the output. In the Fuzzy CMAC, a more intelligent method is adopted in
which the correction of the output error is distributed to the weights in proportion to their contribution.
The weight updating algorithm is described below.

Given a training pair (u, zd) where u = [q , u2 , . . . , uN IT is input vector and zd is the desired
output, update weights and knot points associated with fired fuzzy rules, such that the error between z
and zd is reduced. Suppose there is only one output and many inputs. The Fuzzy CMAC mapping can
be expressed in terms of the product of firing strength and weights

A4
z= spwp.c (2.8)

p=l

The learning algorithm is targeted to reduce error between the desired output zd and the actual output of
Fuzzy CMAC by adjusting the values of weights

E=;(z,-z~ =;e2. w9

The adjustment of the weights is based on the following rules
Aw - -

P- pes
P’

p= 1, 2,..., M (2.10)

where p is the learning rate. These learning rules differ from the original CMAC learning rule proposed
by Albus in that the adjustment of a weight is proportional to its contribution (measured by its firing
strength) to the output signal based on which the error is generated. The conventional CMAC distributes
the output error evenly among all the contributing weights.

3. Nonlinear Channel Equalization Using Fuzzy CMAC

A typical digital communication system is shown in Fig. 3 [3]. The channel includes the effects
of the transmitter filter, the transmission medium, the receiver matched filter, and other components. The



transmitted data sequence s( k ) is assumed to be an independent  sequenx  taking values fiwn ; - I. 1 ;
with equal probability. The inputs to the equalizer. ::(I;:). .~-(k - 1). . . . . -I-( k -- 17 -t- 1) arc tl?e channel
outputs corrupted by an a.dditive  noise /f(k). The taslc of the equalizer at tne sampling instant k; i,s to
produce an estimate of’ the transmitted symbol s(k - cr’) musing the infxmatic~n  contained in A-( k )I *
x(k - 1) , . . .? s( k - /I + 1) . The integers /I, L-/ are E;nown  as the order and lag of tne equalizer.
respectively.

The equalization problem can be formulated as follows. Similar to [S], we define

iC(k-,  = [.C(h:),t(k  - 1) ,..., i(k --II + l)]‘.

Note that f(k) is the noise-free output of the channel, and 4, cil (1) and ptl  tl (-1) represent the two sets. .
of possible channel noise-free output vectors i(k) that can be produced from sequences of the channel
inputs containing s( k - 8, = I and s(k - d) z -1, respectively. The equalizer can be characterized hvM
the function

gk : R” --+ (- 1,1> ‘( , 3 .2 )

i(k - d) = ;yk (,x(k))
where

.-u(k) = [.u(k),x(k  - 1) ,...,- x(k - PZ +-

is the observed channel output. Let p1 [x(k$(k)  E .cI ci (l)] and p-t [ -x(h$(  1:‘) E I<l.tl  (--I)] be the3
conditional

respectively

achieves

probability density functions of x(k) given i(k) E P,, c/ (1) and -<(k) E P,, rl’ (-- 1) q- - -7 7
It was shown in [5] that the equalizer which is defined by

.r,,, Mk)) -= wo] (.u(k)?-(k) E P,',llj W) -I-'-] ~\-(k)~W 65 p,' (/ WNI (3.3).
I-le minimum bit error rate for the given order r’7 and lag n, where

sgn(y)  = 1 (-1) fi ‘V > 0 (V < 0) . If the noise q(k) is zero-mean and Gaussian with1  covariance matrix. * i

then
Q=:~[(rl(k),...,27(k-n+l))(rl(k) ,..., ~(k-11+1)f], (13.4)

-- c eXP
;
-it (k)x- --i+)T,l(x(k)-,+,  - c- 1 eXP

“+ E~j.,j ( 1) .t E>y] J ( .- 1 ) !
-;c 09x T- -3 )Ap (x(k) -i-J .-_ - ---

1--
Let us consider a nonlinear channel described by the following discrete moldel

w?(k)  = s(k) + 0.5s(k - 1) - 0.9[s(k)  + 0.5s(k - l)]” (3.5)

and the white Gaussian noise q(k) with E(# (k)) = 0 .:! . The optimal decision boundary for this cass is
shown in Fig. 4. The elements of the sets P-, o (1) and P2.0  (-1) are illustrated in Fig. 4 by the “0” andb.
cc*‘s respectively. It can be seen that the boundary is very nonlinear. Linear equalization techniques will
not perform well for such a, nonlinear boundary.
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Here we propose to use Fuzzy CMAC as a nonlinear equalizer. The procedure consists of two
steps.

Step 1: Generation of training data.

For Fuzzy CMAC  to be an efficient nonlinear equalizer, a thorough training of various possible
cases is necessary. From Fig. 4, it can be seen there are 8 possible noise free elements. We generate
10,000 data pairs around the 8 noise free elements by adding Gaussian noise to them. The data sets are
shown in Fig. 5. The desired outputs of the network are either 1 or -1. The Fuzzy CMAC equalizer has
two inputs and one output. The training of the network is done by evaluating the error and the error is
used to adjust the weights in the Fuzzy CMAC. We used 10 membership functions for each input of the
equalizer.

Step 2: Performance test

To test the performance of the nonlinear equalizer, we generate another 100,000 data pairs with
various noise amplitudes. The output of the Fuzzy CMAC is compared with the desired values to check
whether the decision is right or wrong. Due to the generalization property of the Fuzzy CMAC, the
network can make good decision about untrained cases. The overall performance is shown in Fig. 6,
which shows the bit error rate versus the signal-to-noise ratio.

4. Conclusion

A new nonlinear equalizer using Fuzzy CMAC neural network is proposed to perform
equalization for nonlinear channels. The training speed of the network is an order of magnitude faster.
Moreover, the human expert knowledge can be incorporated into the equalizer design. Simulation results
show that the performance is similar to existing approaches.
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