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Abstract

One source of phase (and thus group delay) variation is the IF filter in the receiver. This is
either a mechanical filter or more commonly, a crystal filter. These IF filters typically have
been optimized for best amplitude rejection of out-of-band signals vs. achievable passband
flatness for a given number of filter poles. This typically leads to a Chebychev filter
implementation which can have significant group delay variation. If the group delay variation
vs. frequency is significant compared to the symbol rate (in baud) then the bit-error-rate of the
received signal may be substantially degraded. Techniques to equalize the filter at IF are
possi,ble, but may prove difficult to implement and adjust, however they work well independent
of the modulation type. On the other hand equalization of the filter delay at baseband is
possible, but is only exact for linear modulation types (PSK, QAM). FSK modulation (which is
non-linear) cannot be exactly compensated at baseband but if the deviation index is low, then
a reasonably good job of delay equalization at baseband can be accomplished. This article
examines some amplitude, phase, and delay properties of first-order, second-order and all-
pass filters, and illustrates examples of Chebychev and Butterworth IF filters. Finally, a
graphical representation of delay equalization at baseband is shown.

Introduction

It can be shown that there exists several optimal channel amplitude responses for data
communications channels, one of the more popular being the raised-cosine channel response.
It can also be shown that the optimum bit-error-rate (BER) vs. received power level occurs
when the channel phase is linear (group delay is flat)‘. The optimum amplitude response vs.
frequency has been discussed in a previous papet,  this paper will examine the flat group
delay requirement, and equalization of IF filter group delay variation.

Filter Transfer functions

All linear filtering functions can be described as a transfer function relating the filter’s output
amplitude and phase with respect to the filter’s input amplitude and phase. For circuits using
reactive components (inductors, capacitors), the transfer function depends on frequency, and
includes terms involving complex numbers. The transfer function is usually abbrevi’ated H(s),
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where H is a function of the variable, s. In performing analysis of the filter to a sine wave
input, we substitute for s:

s = jco = j2nf (1)

where j is equal to the square-root of negative 1. That is, j is the imaginarv operator, f is the
frequency in hertz, and omega is the frequency in radians/second. In order to describe the
properties of a filter, it is necessary to derive the transfer function and then analyze the
transfer vs. frequency. To describe the transfer function of a network, it is necessary to
describe the complex impedance of each of the components, and then describe the output to
input transfer in those terms, The complex impedance of an inductor is given by:

Z(s) = j2n$Z = sL 12)

This shows that the impedance of an inductor increases with frequency, and that there is a
+90 degree phase shift associated with the inductor (the +j term). Similarly, the impedance of
a capacitor is given by:

w> -L -
1
I 1- -  =--

j2nfC SC
(3)

which shows that the impedance of a capacitor decreases with frequency, and there is a -90
degree phase shift associated with the capacitor (the l/j term, since l/j = -j), The impedance
of a resistor is just R of course, independent of frequency and with no associated phase shift.

-

Figure 1 - First-order. low-pass filter

To derive the transfer function of a first-order low-pass filter (figure 1), we can write the
voltage divider equation :

1

SCf-q+ -T=-

R + RsC + 1
SC

If we assume that R= 1 ohm, and C=l farad, then the time constant is one second, and RC =
1. The we can normalize  the response to 1 second, which is a filter -3 dB. cutoff of 1
radian/second. This can be expressed as:
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H(s)
1= -

s + l

Figure 2 - First-order high-pass filter

Similarly, we can derive the transfer function for a first-order high-pass filter response (figure
2)

..

H(9
R RsCI

R+
1 = RsC+l

When normalized to R=l ohm, and C= 1 farad, this is simplified to:

Ho
S

= -
s + l

(6)

An interesting active circuit is the all-pass filter (figure 3). We can derive the transfer function
for this circuit in a manner similar to above, and when normalized to R=l ohm and C=l farad,
the transfer becomes:

H(s)
s - l= -
s + l

It can be seen that the amplitude does not change with frequency, s, but the phase response
does. This circuit can thus be used to compensate phase delay variation (and thus group
delay variation) without affecting the amplitude response.

Figure 3 - F%-order  all-pass filter



The group delay of a transfer function is related to the phase slope, steeper phase change
means greater group delay. Assuming phi is the phase in radians and omega is the frequency
in radians/second, then group delay, in seconds, is:

If the units are degrees and hertz, then the group delay in seconds is (degrees per hertz)/360.
If the phase is linear (changes at the same rate regardless of frequency) then the group delay
is constant vs. frequency. To analyze and plot these three transfer functions, an ExcelTM
spreadsheet was set up to evaluate the amplitude, phase, and group delay of each. Since
Excel can directly manilpulate complex numbers, this is relatively easy to do.

Figure 4 illustrates the amplitude and phase response of the low-pass filter, figure 5 illustrates
the amplitude and phase of the high-pass filter. Figure 6 illustrates the phrase and group delay
of the low-pass and high pass filters. The two filters have the same phase shape, even
though there is a difference in the absolute phase. This absolute phase difference has no
effect on the group delay, which is identical for both filters.
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Fiigure 4 - Amplitude and phase of a low-pass filter
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Figure 5 - Amplitude and phase of a high-pass filter
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The all-pass filter has flat amplitude response, which is not
group delay are shown in figure 7.
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Figure 6 - Phase and Group delay of low-pass and high-pass filters
(they have exactly the same growJP delay)
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Figure 7 - Phase response and group delay of the all-pass filter,
with a break frequency of 1 radian/second.

As the frequency response of the all-pass is adjusted, the phase and delay responses change.
Figure 8 shows the phase and delay response of a the all-pass filter when the variable resistor
of figure 3 is adjusted for a break frequency of 3 radians/second. Note that the absolute delay
at low frequency is only one-third as large as in figure 7.



Frequency, radians/second

Figure 8 - Phase and Group Delay response of all-pass filter,
with a break frequency of 3 radians/second

Higher Order Filters

Higher order filters, such as band-pass filters can be analyzed just like the low-, hjigh-, and all-
pass filters. A simple bandpass filter composed of a series LC and a shunt R yields the
amplitude, phase, and group delay response as shown in figure 9. This filter has a resonant
frequency of 1 radian/second, and a damping of 0.707 (a Q-factor of 1.414). Q is the inverse
of damping.
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Figure 9 - Amplitude, Phase, and Group Delay response of a bandpass  filter

Here it can be seen that the group delay has a peak at the center frequency of the filter. As
the damping of the filter is changed, the group delay also changes, with low damping (high-Q)
filters having more group delay at the peak. When constructing more complex bandpass
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filters, the delay will peak at the corners of the filter. The sharper the corners, the greater will
be the group delay, generally. To illustrate with two examples, the frequency and group delay
response of a 6-pole Butterworth, a 6-pole Chebychev, and an 8-pole Chebychev filter will be
analyzed. These filters have been moved up to around 12 radians/second center frequency.

Analysis of Butterworth and Chebychev Bandpass Filters

The transfer function, H(s) for these filters can be constructed and analyzed just as has been
done previously. The transfer function of the 6-pole filters is described by equation 10:

-(s--ZJS-ZJS-q)
H(s)= (s-pJo(-p2)(s--p~) (10)

Where pl, p2, p3 are the poles of the filter response, and zl, z2, z3 are the zeros of the filter
response. The zeros determine where the filter response goes to zero (no output), and the
poles determine where the filter response peaks (maximum output). For the Butter-worth and
Chebychev filters, all three zeros are at zero hertz, so equation 10 can be simplified to
equation 11:

(11)

The Butterworth filter has a passband  response that is maximally-flat, and the Chebychev
Type-l filter has an equiripple passband  response (the Chebychev Type-II has an equiripple
stopband response). The difference between these two filter types is the placement of the
poles. In a Butterworth filter, the poles are placed in a circle on the s-plane, and in a

Chebychev filter, they are placed on an ellipse. The two axis of the s-plane correspond to the
real and the imaginary parts of the pole. Since a pole position may in fact be complex, then
the filter pole is actually a complex pole-pair (one pole at positive frequency, the other pole at
negative frequency). The filter described by equation 11 is a 3-order filter, which has 3
complex pole-pairs, and is referred to as a 6-pole filter. Thus the 6-pole Butterworth bandpass
filter consists on two sets of 3 pole pairs on two circles, one with it’s center at the filter center
frequency, the other with it’s center at the negative of the filter center frequency. Each of the 3
poles lies on the half of the circle that lies in the left-hand plane. Figure 10 is a pole-zero
diagram of the Butterworth filter. The 3 zeros are piled up on top of each other at the origin.

Figure 10 - pole / zero diagram of the 6-pole Butterworth filter.



Equation 10 is input to an Excel spreadsheet, and the amplitude and group delay plotted as a
function of frequency. Figure 11 is the 6-pole Butter-worth response, figure 12 is the 6-pole
Chebychev response, and Figure 13 is the 8-pole Chebychev response.
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Figure 11 - 6-pole Butterworth amplitude and group delay response,
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Figure 12 ‘- 6-pole Chebychev amplitude and group delay response.
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Figure 13 - 8-pole Chebychev amplitude and group delay response.

Delay equalization

It can be seen from the three filters that the group delay is largest at the ‘corner’ of the filter.
The vertical dashed line represents the center frequency of the filter. Since each of these
filters is at the Intermediate Frequency, or IF of the radio, the center frequency of the filter will
be demodulated down to zero hertz at baseband by the last mixer (or by the discriminator in
an FM detector). Frequencies to the left of the center frequency are negative frequencies at
baseband, those to the right are positive frequencies. At baseband, it is impossible to
distinguish the positive from the negative frequencies, and they all look like positive
frequencies. Thus the IF response, when translated  to baseband appears as that part of the
response that lies at the filter center frequency and towards the right of that point.

Thus the task of group delay equalization is to impart significant delay at low frequencies, and
less delay at higher frequencies, hopefully the inverse of the filter’s baseband delay
characteristic. Referring back to figures 7 and 8, it can be seen that the all-pass filter has
exactly this needed delay characteristic. Thus using one of these all-pass filters at baseband
in the receiver should allow us to cancel some of the filter delay. It may require several
cascaded all-pass filters to achieve the necessary delay, and some of the all-pass filters may
have to be adjusted to different break frequencies in order to properly compensate for the IF
filter’s baseband delay characteristic.



DC Frequency

Figure 14 - Baseband delay of Chebychev filter

Figure 15a shows the delay of the all-pass filter chain and the Chebychev filter on the same
graph, and figure 15b shows the total delay of the all-pass and Chebychev in series.

A B
Figure 15 - A) delay of all-pass filter and Chebychev filter on the same graph

B) total (sum) of the delay for the equalizer and filter.

It can be seen from figure 15b that
in figure 14. The region of interest
the filter. Since the received signa I
group delay is not important.

the total delay variation in the region of interest is less than
includes the passband  of the filter, but not the stopband  of
that is outside the passband  is rejected by the filter, it’s

Required Filter Bandwidth

The required IF filter width, when properly group delay equalized needs to be wide enough to
pass the received data signal. The baseband width of a data signal can range from one-half
the baud rate up to the baud rate depending on the type of filtering performed. A data signal
limited to one-half the baud rate (i.e,: 4800 Hz. for a 9600 baud signal) requires a great deal of
precision in the filters, and much control of all the filters, and is not usually practical. On the
other hand when the bandwidth is equal to the baud rate (i.e.: 9600 Hz. for a 9600 baud
signal) many properties of the signal are easy to control. The IF filter width needs to be twice
the baseband width, so the required width would be 9600 Hz to 19200 Hz for a 9600 baud
signal (for linear modulation, QAM and PSK), with 19200 Hz resulting in easier to realize
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modems. If FSK (non-linear modulation) of sufficiently narrow deviation is utilized, the filter
width needs to also include the deviation of the FSK in addition to the data spectrum.

Required Group Delay Flatness

The group delay should be flat, within about 20% of a bit duration over the frequency range of
interest. Thus, for a 9600 baud signal, where the bit interval is 104 microseconds, the group
delay should be flat to within 20 microseconds for best performance, from DC up to 9600 Hz.
in the baseband.

Excel is a trademark of Microsoft, Inc.
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