
Introduction to Programming
the TAPR/AMSAT DSP-93

Ron Parsons, WSRKN (w5rkn@ amsat.org)
Don Haselwood, K4JPJ
Bob Stricklin, N5BRG @brg@tapr.org)

Tucson Amateur Packet Radio, Corp.
8987-309 E. Tanque Verde Rd #337

Tucson, AZ 85749-9399
tapr@tapr.org l http://www.tapr.org/tapr

[Copyright 1995, Tucson Amateur Packet Radio]

Abstract
The purpose of this paper is to give a brief overview to assist potential programmers, new to the
TAPR/AMSAT DSP-93 environment, insight into the tools and techniques available when
developing for the DSP-93. The full developers/programming guide is available from TAPR [I].

Introduction

Any int roduct ion regarding DSP-93 l

programming must begin with discussing how
to locate and secure reference materials. The first
step is to locate your local Texas Instruments
distributor and call them. Local distributors have
been known to give free access to their literature
room. Books that you should be looking for
include:

l TMS320C2x User’s Guide By Texas l

Instruments; Document # SPRUOl4C
This book covers the TMS320C25 DSP chip
used in the DSP-93. It covers the chip’s
electrical properties, memory models,
interrupt processing, and, of course, the l

instruction set.

l Linear Circuits; Data Conversion, DSP
Analog Interface, and Video Interface;
Data Book Volume 2 By Texas Instruments;
Document # SLYDOO4A.
This book covers the TLC32044CN AI0 chip
used in the DSP-93. It covers the chip’s
electrical properties, configuration, etc.

Digital Signal Processing Applications with
the TMS320 Family; Theory, Algorithms,
and Implementations

Volume 1 Document # SPRAO12A
Volume 2 Document # SPRA016
Volume 3 Document # SPRA017

These books cover various DSP algorithms
which may or may not be useful to you.

Digital signal processing with the
TMS320C25 Chassaing, Rulph, published
1990 by Wiley, New York 464 pg
ISBN 0471510661

Digital Signal Processing: A laboratory
approach using PC-DSP. Alkin, Oktay,
published 1994 by Prentice-Hall, Inc.
ISBN O-13-328139-6
An introduction to Digital Signal Processing
techniques. Comes with a DOS program
which can compute FIR coefficients, among
other things..

27

The next basic step is to get a good feel for
the basic architecture of the DSP-93. Spend some
time examing the schematics and get a good look
at the interconnect lines. The basic system
inc ludes a DSP eng ine boa rd and a
radio/computer interface board. The DSP Engine,
contains the TMS32OC25 DSP, 32K by 16 bits
of program and data memory - upgradable to
64K, the clock circuitry (40MHz) and some
programmable array logic for system I/O. The
Radio/Computer Interface Board, top board,
contains two eight pin female mini-DIN
connectors for radio interfacing. Incoming radio
signals pass through a voltage divider to establish
the initial levels, then through an eight channel
multiplex chip. The multiplex chip then feeds the
single A/D input with either of the radio inputs
or one of the six auxiliary inputs. The Texas
Instruments TLC32044 Analog I/O chip is used
to sample and update the input signal at a rate of
up to 45K operations per second and includes
aliasing filters. This board also communicates
with your computer at speeds up to 19.2K baud
using a serial connection and, with special
programming, this can be increased to the
maximum rate attainable by a 16C550 and your
computer. [2,3]

The next step is to begin to get comfortable
with either of the development systems (Mac [5]
or Windows [4]) and play with assembling
available source. A low cost shareware
assembler, TASM TMS320-25 Assembler, is
available for code development and both the Mac
and Windows interfaces provide near seamless
use of the assembler. Code development and
testing can become a quick task.

What follows is a basic overview of various
areas needed, when developing for the DSP-93.

Memory Map

The following memory map exists after you have
entered a ‘G’ command from the Monitor. The
‘G’ command is executed after a program
download using DSPLOAD.EXE or the
windows program D93WE. The unit is operating
entirely in static RAM and in the high speed
mode at this point.

PROGRAM DATA

0000 Interrupts
and
Reserved

O O l F -

Reserved
For Monitor

O F F F -
l-000 TINT
1002 RINT
1004 XINT e
1006 TRAP
1 0 0 8 -

User Program User Data
Memory Space Memory Space

F F F F - F F F F -

0000 TMS320C25
MEMORY MAPPED
REGISTERS

0 0 0 5 - -
Reserved

0 0 6 0 -
On DSP Block B2

0 0 7 F -

O l F F -
0 2 0 0 -

On DSP Block BO
0 2 F F -
0 3 0 0 - -

On DSP Block Bl
0 3 F F -
0 4 0 0 -

Page 8 Data
Memory

The Harvard architecture used in the TMS320
is quite different from the typical microprocessor.
There are two memories utilized during one
instruction-data and program. Until experience
is gained working with this architecture, it is easy
to forget this basic principle. There are two
memories active at the same time. By having two
memories, a single instruction can load a word
out of program memory and do something with
a word out of data memory, all within the same
cycle. It facilitates implementing filters and other
digital signal processing algorithms. For
example, stepping down a table of constants, such
as filter coefficients and doing a multiply and
add to accumulator with a data array of signal
values can be accomplished at full machine cycle
speed with no overhead for instruction fetches,
nor double accessing of a single memory.

Program and data memory can change, and
keeping track of “what is which” is needed. How
this is done is largely a function of how the DSP-
93 design uses the TMS320. Therefore, the TMS
literature will not give the whole story necessary
to understand the DSP-93.

The DSP-93 has a number of physical memories.
Some memory is internal to the TMS32OC25
chip and other is external. The tables below
outline the physical memories, as well as the
conditions which determine whether they are
used by the TMS320C25 as program or data.

(1) - XF line/bit is ON after a hardware reset,
after a Monitor reset command (‘R’), or after a
SXF instruction. RXF turns the bit off, and it is
also turned off after a Monitor ‘G’ command.

(2) - Data addresses below 0400h access internal
memory in the TMS320 and therefore are not
available for use in the external memory.

(3) - Addresses FFOOh - FFFFh access internal
memory, BO, when BO has been configured as
program memory (normally after a Monitor ‘G’
command).

Internal memory (TMS320C25) Note that all memory is organized as 16 bit
Label Can be configured as Size words, and not 8 bit bytes. Along the same lines
BO Data or program * OlOOh remember that the accumulator is 32 bits long so
Bl Data only Olooh
B2 Data only

be careful about unintended sign extension.
OOlOh

* BO is in data mode after a hardware reset,
Monitor reset, or CNFD instruction. It is program
memory after a Monitor ‘G’ command, or CNFP
instruction.

External memory
How the external memories are configured
depends on the state of the XF bit. Hardware reset
turns the XF bit ON, as will the SXF instruction.
RXF turns it OFF. SRAM U104, U105, UllO,
and Ul 11 come with the basic kit and provide
two 32K memories (one program and one data).
Four more SRAM IC’s will raise the amount to
64K for both program and data memory.

Internal memory, BO, is configured to the data
mode after a hard reset. Also, the Monitor in
EPROM configures BO to data when a ‘R’ (reset)
command is executed, and to program when a
‘G’ command is executed. Switching BO modes
is done with the instructions CNFP and CNFD,
(set program, and set data, respectively), or the
hardware reset that switches it to data.

External memory is switched via the XF line out
of the TMS320. This line is controlled by the
XF bit. A hardware reset sets this bit high. The
bit can be set/reset by the instructions SXF/RXF,
respectively.

IC number XF = ON(l) "Slow speed" XF = OFF(O) "Fast speed"
SRAM
u104, u105 Data 0000 - 7FFF(2) Prog 0000 - 7FFF(2)
U106, U107 Data 8000 - FFFF Prog 8000 - FFFF(3)

U108, U109 N.A. - Data 0000 - 7FFF(2)
UllO, Ulll N.A. - Data 8000 - FFFF

EPROM
u102, u103 Prog 0000 - 7FFF(2) N.A. -

29

When the XF bit is high, such as after power-up
reset, the EPROM, which contains the Monitor
programs, is active as program memory. This
makes it possible to get the machine running with
something intelligent. XF also selects a low speed
mode, so that the processor is slow enough to
accommodate the EPROM. XF also makes
external memories U104,5,6,7 switch to data
mode and U108,9,10,11 not accessible. This
arrangement allows the EPROM Monitor to load
program into data memory (U104,5,6,7 and BO).
This switching is necessary since the TMS320
does not execute instructions which store
anything into program memory; the downloaded
program is placed into the DSP-93 as data.

With the Monitor program executing out of
EPROM, the usual step is to download a program
from a general purpose computer. The program
being downloaded is stored as data, in data
memory, which is U104,5,6,7 at this time. Upon
completion of the downloading, the general
purpose computer issues a ‘G’ command which
causes the DSP-93 Monitor to turn off the XF
bit. This switches U104,5,6,7 from data memory
to program memory. The Monitor also jumps to
location 1008h (of program memory) to start the
program that was just loaded (into what was data
memory).

With XF low, program normally runs out of
external SRAM, U104,5,6,7, using U108,9,10,11
for data storage. BO, B 1, and B2 can also be used.
BO as stated before can be configured either as
data or program, though remember that the
Monitor sets it to program after the loading
process completes and a ‘G’ command is given.
Operating out of internal memory is somewhat
faster than external memory and may be needed
for time critical operations. The TMS320C2x
User’s Guide shows timings for instructions
according to the memory combination being
used.

Since BO can be switched between data and
program, it can be loaded with a program which
can be executed. During the normal program
downloading process, BO is configured as data,
so it can be loaded with program no differently
than U104,5,6,7. When the loading process

completes, the Monitor does a ‘G’ command and
jumps to 1008h. The program at 1008h can then
jump to BO and execute the code which was
loaded. When BO is configured as program, it is
no longer at locations 0200h - 02FFh, but
occupies FFOO - FFFFh. Therefore, the code
assembled at 0200h - 02FFh must be capable of
executing properly when moved to locations
FFOOh - FFFFh. The jump from the program in
U104,5,6,7 will be to FFxyh, if the beginning of
the code loaded into BO is 02xyh.

External memory is not accessed for data
addresses below 04OOh, as these are reserved for
the TMS320. Also, FFOOh - FFFFh of program
memory is not accessed when BO is configured
as program.

Note that some addresses are really registers
within the TMS320, such as locations 0 and 1
which are used to load/receive the serial shift
register data to/from the AI0 chip. The TMS
manual covers these in detail.

External memory, (prog, fast), 0400h - lOOOh
holds the Monitor which is used when in the fast
mode. If these locations are blasted, such as with
a Monitor Fill command, the Monitor is lost and
a hard reset is required.

The TMS320 cannot load and store (i.e. move)
data from program memory to program memory.
Data-to-data memory can be accomplished, as
well as program-to-data and data-to-program.
Therefore, it is not likely that a runaway program
will blast the Monitor stored in 0400h - lOOOh.

The Monitor uses BO during the transition from
EPROM to the SRAM or from low speed
operation to high speed. Therefore, it is not
possible to load the entire 256 words with
program, or Fill it via the Monitor. If a reset
command is executed by the Monitor, locations
0200h - 0275h are overwritten with “stuff’ from
the Monitor, wrecking what might have been
downloaded into BO. As long as a Monitor reset
does not occur between the loading of BO and
utilization of BO (either as data or program), then
the full page can be used. Otherwise, only those
locations not used by the Monitor can be used (
0276h - 02FFh).

30

DSP-93 Firmware - Monitor Operation data is expected in the following sequence; count
(8 bits), byte address (16 bits) (the byte address

When the DSP-93 is powered up, the firmware is twice the word address), Intel hex code
Monitor takes control of the unit. The Monitor command (8 bits), some quantity (count) of data
conditions the TMS320C25 and then begins (8 bits) and finally an 8 bit checksum. If no
polling the serial data link looking for single checksum errors are found, the data is placed into
character instructions to execute. The action memory in the address locations specified. If an
taken by the Monitor during each operation will error occurs, a checksum error message is
be explained in more detail here. transmitted via the serial port. When the loader

is finished, control is returned to the Monitor.
After initialization is complete, the Monitor
enters a polling loop checking the serial port for J-JUMP TO XXXX & RUN
an input character. The Monitor is not case JUMP and run executes in the same manner as
sensitive and an entry of ‘?’ will bring a listing the ‘G’ command except execution begins at the
of the Monitor version and the commands. The specified address. The interrupt vectors must still
commands available in the monitor are as be in place if you are going to allow interrupts to
follows: occur.

A-AR REGISTERS
This command displays the value contained in
the eight 16 bit registers on the TMS32OC25. The
first register is used by the Monitor and so the
value in register zero will normally be 0400 hex.
This is what you should see when you enter ‘A’
after power up.

D-DUMP MEMORY
The dump memory command displays the
specified block of program or data memory. You
must specify whether you want to use program
or data memory. Then, enter the hex starting
address and the ending address of the memory
block. The memory contents will then be
presented in block form with one 16 bit data
address and eight 16 bit data values on each line.

F-FILL MEMORY
The Fill memory command works like the data
dump command except it is filling memory with
a 16 bit hex value. If you write over any program
areas, you will kill the Monitor.

G-FLIP & RUN PROGRAM @ 1008h
The ‘G’ command is used after you have loaded
a program and you are ready to run it. The Flip
referred to here means that the Monitor is flipping
from the EPROM over into the static RAM.

H-INTEL LOADER HIGH BITS
This is an Intel style hex loader for placing bits
in data memory. To execute properly, the
DSP-93 must be in the LOW speed state. The

L-INTEL LOADER LOW BITS
The ‘L’ command works exactly like the ‘H’
command except it deals with the lower 8 bits of
the 16 bit words.

M-MODIFY WORD
This command is used to change the contents of
a 16 bit memory location in program or data
memory. The command can be used to force the
D/A output of the TLC3204X to a particular
value. This can be done by modifying location
0001. D/A changes will only occur if the AI0
chip is active.

P-PROGRAM
This command is used to launch one of the
firmware programs located in the DSP-93
EPROM. ‘?’ will list all programs available.

R-RESET
Entering an ‘R’ will cause the DSP-93 to go
through a soft reset. The results of this should
be equivalent to a hardware reset. If you have
entered the ‘G’ command and you are working
in static RAM, the DSP-93 will bounce back to
the EPROMs just as if you hit the reset button.
Some of the areas in data RAM are initialized
during a reset cycle.

S-SHOW WORD
This command is used to display the contents of
a particular memory location.

31

T-MEMORY TEST
This command tests the current data memory for
errors. The memory is tested by writing OOOOh,
5555h, and OFFFFh into every location and
reading it back. The test will loop through all
locations and give a ‘*’ prompt if no errors occur.
If an error occurs, the location of the error will
be reported along with the value written and the
value returned. Both RAM banks can be tested
by issuing the ‘T’ command in slow mode (i.e.,
after a reset) and again in fast mode (i.e., after a
‘G’ command).

Sine/Cosine table
In versions of the Monitor prior to Version 2.17,
the sine/cosine table located in EPROM was
copied to RAM memory when the ‘G’ command
was issued. Beginning with Version 2.17,
although the table is still in EPROM, it is no
longer copied to RAM. This 1) frees up some
Monitor code area 2) eliminates the possibility
the sin table will write over code the user loads,
and 3) allows user to locate the sin table in data
memory which is the place he will really need it.

The table in EPROM is a 540 degree, 0.25 degree
step, sine/cosine table is located in EPROM from
767Fh to 7EEFh and is scaled by 2*15. Sine
begins at 767Fh; cosine begins at 77E7h.

The Parts of a DSP-93 Program

One of the best ways to learn DSP-93
programming is to read, study, and understand
existing programs. A lot of source code is
provided on the system diskettes. Use this
valuable resource. Not every program will use
all these parts, and not all that do use them will
use them exactly as shown. If they did, there
would be only one program!

Header (Instructions, Copyrights, Disclaimers)
It’s a good idea to have a header that tells what
the program is, how to assemble and execute it,
who wrote it and a Copyright and Disclaimer
statement. See the sample program for more
examples.

The Include Files
There are currently five include files that define
most of the constants that you will use when
programming the DSP-93. It is strongly
encouraged that all programs include these files
and use the constants therein. This will make your
program easier to understand and will reduce
programming errors. These files are:

MACROS.INC
Purpose: This macro defines the origin in the
code segment that the initialized data is to begin.
This macro defines storage in the code segment
while also creating a symbol representing the
location the data will reside in data memory after
an initialization block move.

MONITOR.INC
Purpose: This file defines the DSP-93 Monitor
functions and addresses. Symbolic names for all
of the entry points have been assigned. This file
should be used instead of the absolute addresses
since a linker does not exist. The file may also
contain any macros defined in the future that can
help in using the Monitor functions.

PORTS.INC
Purpose: This file defines the DSP-93 I/O ports
and I/O bits. The file assigns symbolic names
for each of the ports and bits. The user should
make use of the TASM bitwise AND (8~) and
OR (I) operators to manipulate the bits. The
programmer is discouraged from using hex
values in programs, as other users may have to
read the listings, and the symbolic names assign
greater meaning to the code.

SERIAL.INC
Purpose: Define symbols used in configuring the
serial port for the DSP-93. The symbols in this
file describe the 16550 UART. Programmers
should use this file instead of using magic
numbers in their programs.

REGS.INC
Purpose: This file defines the register
replacements for the TASM assembler. The
register file AR0 through AR7 are defined as well
as the memory mapped registers defined, by the
processor.

32

The following lines of code should be in your
source after the header:

.NOLIST
#include "MACROS.INC"
#include "REGS.INC"
#include "PORTS.INC"
#include "MONITOR.INC"
#include "SERIAL.INC"

.LIST

Memory Location Equates
Storage variable locations in internal and/or
external memory must be defined in your
program. These variables are defined using an
.EQU directive to assign values to labels. For
example:
. global variables
b.JFI .EQU 060h ;A10 input buffer
BUFO .EQU 061h ;A10 output buffer
DO .EQU 062h ;data output buffer

Program Constant Equates
Constants used in your program sho.uld be
assigned a label and that label be given a value
using an .EQU directive. It is strongly encouraged
that all programs use labels for constants rather
than using constants in the body of the program.

Program Origin
The TASM assembler does not, by default, set
the DSP-93 starting address of 10OOh. So be sure
to include the directive: . ORG 1 o o Oh

Interrupt Vectors
The first four instructions of the program handle
the various interrupt vectors and must branch to
the appropriate labels. The Timer and Trap
interrupts will not occur in the DSP-93 programs,
so they branch to the program starting label GO.
Program execution begins at 1008h, just
following the TRAP interrupt vector.

;Define Vectors
B GO ;branch to program

; start (TINT) Timer
B RINT ;A10 receive interrupt

; service routine
B XINT ;A10 transmit interrupt

; service routine
B GO ;branch to program

; start (TRAP)
GO DINT .proqram starts here8

Initialization of the Math, Serial and
Memory Model
There are various parameters for specifying how
mathematical operations, the DSP chip serial IO,
and memory models will be handled. Your
program should set these values at the beginning
of the program.

Initialization of the AI0
The initialization of the AI0 chip is probably the
most confusing aspect of DSP-93 programming.
However, using the recipes written by the
development group should enable you to start
the chip sampling at the rate you desire without
problem.

The AI0 chip is reset and enabled by
manipulating the IO data lines D 15 and D 14. In
doing so, the variable CFG in which the value to
be output to the RADIO GAIN port must be in-
external memory, i.e. page 8 or greater.

Immediately after resetting and enabling the AI0
chip, it must be configured to specify the AI0
gain, sync, filters and the values of RA/TA and
RB/TB which set the sample conversion
frequency. See “AI0 Port Programming, Setting
the AI0 conversion frequency” [11.

Initialization of the DSP
The initialization of the DSP consists of
initializing of any program values your program
may use. For example:

DSP-IN1 ZAC ; zero A

SACL DO ; zero buffer
SACL SO ; zero buffer

Handling Interrupts
The transmit and receive interrupts, generated
by the AI0 chip, must be handled by your code.
This requires two functions RINT and XINT,
pointed to by the interrupt vectors at the
beginning of your program. Data received from
the AI0 are stored in the variable BUFI and
processed, in this example, by the function DSP.
Data to be sent to the AI0 is stored in the variable
BUFO and will be processed when a transmit
interrupt occurs. TINT and TRAP interrupts can
be handled in the same way.

33

Serial Port IO and Exiting to the Monitor
If your program is to read the DSP-93’s Serial
Port while executing, code is available that
provides that capability. The function should be
called from someplace in your code that is
executed repeatedly. The character read is
returned in the variable CHARREAD. If no
character were available, ACC will be zero upon
return. In any case, to be a user-friendly
DSP-93 program, include this function always.
If an upper- or lower-case R is sent to the
DSP-93 Serial Port, the program will exit to the
Monitor.

Wait Functions
There are two “wait” routines in the Monitor (See
MONITOR.INC). There are also three “wait”
functions that are commonly included in
DSP-93 programs. These have delays of:

WAIT4 104 msec
WAIT2 52 msec
WAIT1 26 msec

Defining Data Tables
Tables of data such as filter coefficients, strings,
etc. may be defined within your program.

Using Pre-defined Data Tables
There are two tables of waveforms provided with
the DSP-93 source code. One table is the Sin/
Cos table:
0..511 is Sin(theta), 512 words = 2 PI
64..639 is Cos(theta), 512 words = 2 PI

512 words long for each table, total
640 words long. The table is scaled by
2 Y 1

the other is the general waveform table:
Table 0 = Sine(theta) scaled by 2Y5
Table 1 = Triangle(theta)
Table 2 = Square(theta)
Table 3 = Sawtooth(theta)

The End
Don’t forget the following directive at the end
of your program.

.END

; end of program

AI0 Port Programming

Setting the AI0 conversion frequency
The AI0 conversion frequency (sampling
frequency) is set during the AI0 configuration.
There are two values that determine the
conversion frequency, TA and TB. The
conversion frequency (in Hertz) is:

1 0 , 0 0 0 , 0 0 0
2 l TA l TB

The values are most easily set using the macros
CMDAJAL and CMDB VAL.-

See “Linear Circuits; Data Conversion, DSP
Analog Interface, and Video Interface; Data Book
Volume 2” for more information on setting the
conversion frequency. The AI0 chip has a
specified upper limit on the conversion frequency
of 19.2 kHz, but the chip will operate
considerably in excess of this. For example, the
9600 bps FSK modems use a conversion
frequency 41666 Hz. A table of conversion
frequencies is provided in the programming
guide [11.

IO Port Programming

Which Port does What
The TMS32OC25 has 16 IO ports, many of which
are implemented in the DSP-93. Data is written
to an I/O port with the OUT instruction and read
with the IN instruction. For example:

OUT CHARREAD,UART-CTRL
IN CHARREAD,UART-READ

Debugging DSP-93 Programs

Debug functions in the Monitor
The Monitor ROM includes a debug routine
developed by Tom McDermott, NSEG. This
routine can be called as a development aid when
you are generating new DSP code or if you are
just studying existing code.

Debugging usin LOC.ASM
The code in L8 C.ASM was developed for
finding problems. It may be used to determine
when program execution stops. An author of code
which seems to be stopping mysteriously should

34

integrate this code into his program for testing.
Then one of the users with a DSP-93 which hangs
may run the modified program and report back
with the results. Results can be reported by
dumping memory in the DSP-93 using the
Monitor. The memory dump can be captured and
posted for evaluation by the author of the code.
If we can determine when the problem is
occurring the solution may also appear.

Monitor IO Routines

A collection of Monitor routines which should
help speed code development is available for use.

Refer to the file MONITOR.INC included with
the release disks for the exact location of these
routines.

GET4HEX and GETVAL16
These two routines are the same. They collect a
16 bit hex value from the serial port. The value
should be presented as four ASCII characters (0
through F digits). The four hex digits are
converted to a sixteen bit HEX word and stored
in a single memory location for later use. Look
at MONITOR.INC for the storage location and
a suggested label. This memory storage location
is for the current page of memory established by
the LDPK instruction.. The LDPK is normally
set to page 8 with the instruction LDPK 8.

GET2HEX
This routine collects an 8 bit hex value from the
serial port. The value should be presented as two
ASCII characters (0 through F digits). The two
hex digits are converted to an eight bit HEX word
and stored in a single memory location for later
use. Look at MONITOR.INC for the storage
location and a suggested label. This memory
storage location is for the current page of memory
established by the LDPK instruction.. The LDPK
is normally set to page 8 with the instruction
LDPK 8.

GETCHAR
This routine collects a 4 bit hex value from the
serial port. The value should be presented as one
ASCII character (0 through F digits). The hex
digit is converted to a four bit HEX word and
stored in a single memory location for later use.
Look at MONITOR.INC for the storage location
and a suggested label. This memory storage

location is for the current page of memory
established by the LDPK instruction.. The LDPK
is normally set to page 8 with the instruction
LDPK 8.

HEXOUT
This routine assumes a single HEX digit is stored
in the accumulator. This digit is converted to
ASCII and sent to the serial port.

INBIT
This routinue retrieves incoming data from the
serial port. Data is placed in the indirect address
location pointed at by AR(ARP).

OUTBIT
This sends the lower 8 bits of AR(ARP) to the
serial port. This routine uses memory location
0060h of the current page for temporary storage.
Location 0060h is used to store the UART
register information while the routine is sending
the data. The register information from the UART
is used to determine if CTS is set or cleared and
if the transmit data buffer is full.

OUTBIT
Sends the lower 8 bits of location 0062h of the
current page to the serial port. This routine uses
memory location 0060h of the current page for
temporary storage. Location 0060h is used to
store the UART register information while the
routine is sending the data. The register
information from the UART is used to determine
if CTS is set or cleared and if the transmit data
buffer is full.

PRVAL08
The 8 bits in a defined memory location of the
current page are converted to ASCII and sent to
the serial port. MSB is sent first. See
MONITORING for the proper memory location
and label to use for this routine. This routine uses
HEXOUT.

PRVAL16
The 16 bits in a defined memory location of the
current page are converted to ASCII and sent to
the serial port. MSB is sent first. See
MONITOR.INC for the proper memory location
and label to use for this routine. This routine uses
HEXOUT.

RESET
Jump to this location to restart the Monitor.

35

SD CRLF
Sends a single carriage return and line feed to
the serial port.

SD STR
Calling this routine with a 16 bit address stored
in the current AR(ARP) register will cause a
string to be sent to the serial port. The C-style
string should begin at the AR(ARP) memory
pointer and end with 00. Only the lower 8 bits of
the memory words will be sent. The string data
must be in data memory space.

SPl through SPlO
These routines will send the indicated number
of spaces (20 Hex) to the serial port.

MWAITl and MWAIT A
The WAIT routines are shown here. You can enter
the routine at MWAITl or MWAIT A with your
own value set for AR2. With a 40.MHz clock,
the wait from MWAITl will be about 32
milliseconds while the wait from MWAIT A will
be about N mS where N is the value in AR2. Use
MONITOR.INC for the entry locations for
MWAITl or MWAIT-A.

MP BLK MV
Thi&outiie will move a block of data memory
to program memory. You must provide pointers
to the beginning and end of the block in program
memory space and the beginning of the block in
data memory space. This routine would be useful
if you are dynamically creating program code in
data memory and need to move it to program
space.

PM BLK MV
This routine will move a block of program
memory to data memory. You must provide
pointers to the beginning and end of the block in
program memory space and the beginning of the
new block in data memory space. This routine
would be useful if you want to include a sin table
in your program. Your program would be loaded
into the DSP-93 in what will become program
memory. After starting your program you would
use this routine to move the table to data memory.
The routine may also be used to move string data
from program memory to data memory for later
use. The following example shows how the
routine would be called.

Assembling a DSP-93 Program

How to assemble a file using TASM under
DOS
If you are using DOS, the command line to
assemble a TASM source file, say XXX.ASM,
is: TASM -3225 -la1 -go XXX.ASM
This will result in a listing file XXX.LST being
generated and an object file XXX.OBJ. For
further options when using TASM, see the TASM
documentation.

Windows and Macintosh Assembly
See the Help files for information on using
D93WE or DSP-93Control as a code
development environment.

a - -

References:
Parsons, Ron, W5RKN. (1995).
J u n e ,Programming Guide for the DSP-93.
1995. TAPR: Tucson, AZ.

Stricklin, Bob. (1994). TAPR/AMSAT
Joint DSP Project: DSP-93. Proceedings
of the TAPR 1994 Annual Meeting. Tucson
Amateur Packet Radio Corp.

DSP-93: The TAPRIAMSAT Joint DSP
Program. (1994). Issue #55, Summer
1994, Packet Status Register. pp. l-4.
Tucson Amateur Packet Radio Corp.

McDermott, Tom, NSEG. (1995). D93WE
Windows Development Environment for
the TAPR/AMSAT DSP-93. Proceedin@
of the 1995 TAPR Annual Meeting. St
Louis, MO. March, 1995. TAPR: Tucson,
AZ. p. 31.

Parsons, Ron, WSRKN. (1995). DSP-93
Control Macintosh Development
Environment for the TAPR/AMSAT DSP-
93. Proceedings of the 1995 TAPR Annual
Meeting. St Louis, MO. March, 1995.
TAPR: Tucson, AZ. p. 38.

