
PACTOk
An Overview of a New and EfEixtive HF Data Commnnication Protocol

Data Gommllnicatio~ via anlateur radio
LlsiIlgHFfre hasrecentlybecome
more effective and enjoyable due to a new
co-cation protocol called PACTOR
PACTOR was developed by two
enterprising German amateu~~,DIhMAA
and DF4KJL This arkle is based on the
information provided by these gentlemen
in their various writings.

PACTOR Features
PACTOR was designed to overcome the
shortcomings exhibited by both packet and
ANlTOR in HF operation while remaining
affordable for the average amateur
operator.
- Error-free data transmission (less than 1
x 10-S)

True binary data transmission
Efficient use of channel capacity
Good interference tolerance
Requires only 600 Hz channel bandwidth
Complete visibility of sending and

receiving callsigns

Whv PACTOR?
HF propagation is characterized by
multipath propagation which induces ‘bit
stretching’ and phase distortions, fading,
impulse noise, and interference by other
stations, among other obstacles to
comIIlunication,
The PACTOR mode is similar to AMTOR
which is good for ordinary HF
commumcation. Both use half duplex
ARQ; packets (blocks) of data carrying the
information are acknowledged with short
‘receipt’ signals by the receiving station.
When errors occur, the receiver can
request the repetition of a packet with
relevant control signals. *
PACTOR uses a MASTER/SLAVE
phasing like AMY’TOR. The SLAVE clock
1s synchronized to the h4ASTER timing.

Only the MA!STER corrects his Receive
Pb-
A long series of tests conducted by
DL6MAA and DF4W have shown that
for operation in rapidly changing
conditions, it is not a good policy to adjust
packet length automatically. Simulations

 on-the-air testing the optimum
HF packet length to be about one second.
To compensate for varying conditions,
PACTOR varies the number of data
characters in the data block, but does not
change any of the synchronous timing
parameters. PACTOR determines the
broper baud rate to use based on the
‘accuracy of bit transitions and the link
error statistics.
Data blocks have CRC-16 checking as is
done in AX25 packet. This is much more
robust than the parity bits FEC used in
AMTOR.
The data field of the PACTOR packet can
contain any digital information; the format
of the codes is specified in the status byte.
At the present trme the choice is between
8 bit ASCII and Huffman compressed 7 bit
ASCII.

Authorization
The US FCC regulations specify that
Baudot or ASCII codes may be used for
data transmission, The 8 bit ASCII text
transmitted by PACTOR is closer to ‘pure
ASCII’ than the bit-stuffed HDLC used by
AX25 packet, so there should be no
question of the legality of this mode. The
compressed PACTOR data mode uses
ASCII characters encoded in a channel-
capacity-enhancing format which still
meets the intent of the regulations. The
regulations regarding amateur
transmissions require that there be no
intent to obscure the data transmitted. The
Huffman encoding scheme is published as
an appendix to this article. It seems
reasonable to me to consider that encoding

62

for spectrum efficiency using a widely
pubhshed encoding scheme shows no
mtent to encrypt the content of the data
transmkion and is therefore allowable
under US regulalions.

Performance
PACTOR achieves good throughput
during poor HIF conditions by a variety of
tech.quesXheactualbaudrateiskept
low-thesameasAMTORThisisone
thirdtherateoftyphNWAX25packet
operation. From another point of view,
AMTOR and PACTOR bits are three
times as long as 300 baud HF packet bits,
thus providing much increased protection
from the bit smearing caused by multipath
propagation,
A doubling of the throughput compared to
AMTOR results ffrom sending longer
blocks of data (but still short enough to
cope with most fades) thus reducing the
percentage of overhead carried. In
addition, the ability to automatically
double the data content of each block
under favorable conditions provides a
considerable increase in efficiency.
Finally, encoding ASCII text (7 bit
characters) using Huffhan codes increases
throughput by an average of at least 70
percent.

Memory-ARQ ’
A sigpificant feature of PACTOR is
Memory-ARQ. Copies of the repeated
reception of the same packet which fails
the CRC are aggregated in memory and
are summed individually for each bit. The
aggregate of all unsuccessful transmissions
is decoded which effectively increases the
signal to noise ratio by about 15 dB. This
PACTOR feature is hardware dependent
and prevents the proper implementation of
PACTOR as a software- only upgrade to
packet or Ah4TOR equipment.
The combination of the above factors
provides a protocol which can provide a
throughput nearly equal to HI? packet in
the best of conditions, and much better
throughput than packet during typical
conditions. Compared to AMTOR, the

throughput in good conditions is up to four
times as greaL During the poorest of
conditions, throughput is considerably
better than AMTOR because of the
CRC-16 error checking and Memory-ARQ
capabilities.

Appendix: PACTOR Huffman
code
l!itdbm coding is relativelv indifferent to
differences be6een red &d theoretical
alphabet character fpequencies, so that
similar good results are obtained in
German and Englglish plain text. The
compression factor attained with ASCII
amoW to about 1.7, resulting in an
average of 4.5 bits per character. A greater
compression factor would require
considering the statistical relationships
between the individual characters (Markov
encoding).
Code in order of frequency, LSB (sent
first) on the left:

Character ASCII EMYfIIlm

space
e
n
i
r
t
S
d
a
u
1
h
g
m
<CR>
<LF>
0
c
b
f
W

D
k
Z

32 10
101 011
110 0101
105 1101
114 1110
116 00000
115 00100
100 00111
97 01000
117 1111.1
108 000010
104 000100
103 000111
109 oololl
13 001100
10 00’1101
111 OlOOlO
99 010011
98 0000110
102 0000111
119 0001100
68 0001101
107 0010101
122 1100010
46 1100100
44 1100101

63

S
A
E
P
V

0
F
B
C
I
T
0
P
1
R
(
)
L
N
Z
M
9
W
5
Y
2
3
4
6
7
8
H
J
U
V
<FS>
X

K
3
--

4
Q
J
G

?.

/
15

83. 11’11011
65 00’101001
69 llooooo0
112 11m10
118 11m11
48 l1.sDoolll
70 lmolloo
66 11001111
67 lllloool
73 11’110010
84 11’110100
79 ocm01ooo
80 ooo101100
49 00’101oooo
82 1 moooo10
40 110011011
41 110011100
76 110011101
78 1111ooooo
90 111100110
77 111100110
57 ooo1010010
87 ’ cKMI1010100
53 ~01010101
l21 0001010110
50 0001011010
51 0001011011
52 01)010111oQ
54 0001011101
55 0001011110
56 ooo1011.111
72 0010100010
74 1100000110
85 1100000111
86 1100011000
28 1100011001
120 1100011010
75 1100110100
63 1100110101
61 1111000010
113 1111010110
81 1111010111
106 00010100110
71 00010100111
45 oco10101111
58 00101000111
33 11110011101
47 11110011110
42 001010001100
34 1l0001101100
37 110001101101

w-
49.
+
>
@

<
X
#
Y

II
I

{
Y

A

<us>

<GS>
9 ESC >

<CAN>
<ETB>
exN>
<NAK>
<DC4>
<DC3>
<DC2>
cDCl>
<DLE>
<RS>
<SI>
<so>
4cl+
<VT>
<HT >
CBS>
<BEL>
<ACK>
<EN@
<EOT>
<ETX>
4TX>
<SOH>
CNUL>
<SUB>

39
95
38
43
62

36
60
88
35
89
59
934
91
93
127
126
125
124
123
96
94
32
29
27
25
24
23
22
21
20
19
18
17
16
30
15
14
12
11
9
8

6
5
4
3
2
1
0
26

11or001101:110
111100001z00
111100111001
111100111110
111100111111
ooo101011-moo
4#)0101011:1001
ooo101011:1010
ooo101.0111011
001~01ooo1 lo1 1
001010001z0101
111100001’10100
11110000110101
001010001l01000
001010001101001
110001101111000
110001101111001
110001101’1111010
110001101’111011
110001101111100
110001~01111101
110001101111110
110001101111111
11.1100001101100
111100001101101
111100001101110
111100001-101111
111100001110000
111100001110001
111100001110010
111l00001110011
111100001110100
111100001110101
111100001110110
111100001110111
113100001111000
111100001111001
111100001111010
113100001111011
113100001111100
11l100001111101
113.100001111110
11-l.100001111111
1111.00112000000
11n100111000001
11l100111000010
1111001-l1000011
113100111000100
1’1.:1100111000101
11.1200111000110
11l100111000111

64

