PACTOR:
An Overview of a New and Effective HF Data Communication Protocol

Gwyn Reedy, W1BEL

Data communication ‘ggs amateur radio
using HF frequencies has r become
more effective and enjoyable due to a new
communication protocol called PACTOR.
PACTOR was developed by two
enterprising German amateurs, DL6MAA
and DF4KV. This article is based on the
information provided by these gentlemen
in their various writings.

PACTOR Features

PACTOR was designed to overcome the
shortcomings exhibited by both packet and
AMTOR in HF operation while remaining
affordable for the average amateur
operator.

- Error-free data transmission (less than 1
x 10-S)

- True binary data transmission

- Efficient use of channel capacity

- Good interference tolerance

- Requires only 600 Hz channel bandwidth

- Complete visibility of sending and
receiving callsigns

Why PACTOR?

HF propagation is characterized by
multipath propagation which induces ‘bit
stretching’ and phase distortions, fading,
impulse noise, and interference by other
stations, among other obstacles to
communication.

The PACTOR mode is similar to AMTOR
which is good for ordinary HF
commumecation. Both use half duplex
ARQ; packets (blocks) of data carrying the
information are acknowledged with short
‘receipt’ signals by the receiving station.
When errors occur, the receiver can
request the repetition of a packet with
relevant control signals.

PACTOR uses a MASTER/SLAVE
phasing like AMTOR. The SLAVE clock
1s synchronized to the MASTER timing.

62

Only the MASTER corrects his Receive
phase.

A long series of tests conducted by
DIL6MAA and DF4KYV have shown that
for oPeration in rapidly changing
conditions, it is no? a gzl)od policy to adjust
packet length automatically. Simulations
and on-the-air testing showed the optimum
HF packet length to be about one second.
To compensate for varying conditions,
PACTOR varies the number of data
characters in the data block, but does not
change any of the synchronous timing
parameters. PACTOR determines the
proper baud rate to use based on the
accuracy of bit transitions and the link
error statistics.

Data blocks have CRC-16 checking as is
done in AX25 packet. This is much more
robust than the parity bits FEC used in
AMTOR.

The data field of the PACTOR packet can
contain any digital information; the format
of the codes is specified in the status byte.
At the present time the choice is between
8 bit ASCII and Huffman compressed 7 bit
ASCII.

Authorization

The US FCC regulations specify that
Baudot or ASCII codes may be used for
data transmission, The 8 bit ASCII text
transmitted by PACTOR s closer to ‘pure
ASCII’ than the bit-stuffed HDLC used by
AX25 packet, so there should be no
question of the legality of this mode. The
compressed PACTOR data mode uses
ASCII characters encoded in a channel-
capacity-enhancing format which still
meets the intent of the regulations. The
regulations regarding amateur
transmissions require that there be no
intent to obscure the data transmitted. The
Huffman encoding scheme is published as
an appendix to this article. It seems
reasonable to me to consider that encoding

for spectrum efficiency using a widely

ublished encoding scheme shows no
intent to encrypt the content of the data
transmission and is therefore allowable
under US regulations.

Performance

PACTOR achieves good throughput
during poor HF conditions by a variety of
techniques. The actual baud rate is kept
low - the same as AMTOR. This is one
third the rate of typical HF AX.25 packet
operation. From another point of view,
AMTOR and PACTOR bits are three
times as long as 300 baud HF packet bits,
thus providing much increased protection
from the bit smearing caused by multipath
propagation,

A doubling of the throughput compared to
AMTOR results from sending longer
blocks of data (but still short enough to
cope with most fades) thus reducing the
percentage of overhead carried. In
addition, the ability to automatically
double the data content of each block
under favorable conditions provides a
considerable increase in efficiency.

Finally, encoding ASCII text (7 bit
characters) using Huffman codes increases
throughput by an average of at least 70
percent.

Memory-ARQ

A significant feature of PACTOR is
Memory-ARQ. Copies of the repeated
reception of the same packet which fails
the CRC are aggregated in memory and
are summed individually for each bit. The
aggregate of all unsuccessful transmissions
is decoded which effectively increases the
signal to noise ratio by about 15 dB. This
PACTOR feature is hardware dependent
and prevents the proper implementation of
PACTOR as a software- only upgrade to
packet or AMTOR equipment.

The combination of the above factors
provides a protocol which can provide a
throughput nearly equal to HF packet in
the best of conditions, and much better
throughput than packet during typical
conditions. Compared to AMTOR, the

throughput in good conditions is up to four
times as great. During the poorest of
conditions, throughput is considerably
better than AMTOR because of the
CRC-16 error checking and Memory-ARQ
capabilities.

Appendix: PACTOR Huffman
code

Huffman coding is relatively indifferent to
differences between red and theoretical
alphabet character frequencies, so that
similar good results are obtained in
German and English plain text. The
compression factor attained with ASCII
amounts to about 1.7, resulting in an
average of 4.5 bits per character. A greater
compression factor would require
considering the statistical relationships
between the individual characters (Markov
encoding).

Code in order of frequency, LSB (sent
first) on the left:

Character ASCIlI Huffman

space 32 10

e 101 011

n 110 0101

i 105 1101

r 114 1110

t 116 00000

S 115 00100

d 100 00111

a 97 01000

u 117 11111

1 108 000010

h 104 000100

g 103 000111

m 109 001011

<CR> 13 001100

<LF> 10 00'1101

0 111 010010

C 99 010011

b 98 0000110

f 102 0000111

w 119 0001100

D 68 0001101

k 107 0010101

z 122 1100010
46 1100100
44 1100101

-

63

64

POTOR | CRXALZC

* S~ -

19
w2
\Y

11'11011
00'101001
11000000
11000010
11000011
11000111
11001100
11001111
I1lloool
11'110010
11'110100
000101000
000101100
001010000
110000010
110011011
110011100
110011101
111100000
111100110
111100110
0001010010
0001010100
~01010101
0001010110
0001011010
0001011011
0001011100
0001011101
0001011110
0001011111
0010100010
1100000110
1100000111
1100011000
1100011001
1100011010
1100110100
1100110101
1111000010
1111010110
1111010111
00010100110
00010100111
00010101111
00101000111
11110011101
11110011110
001010001100
110001101100
110001101101

<HX,\ ®v+Fk

(e

}
{

Vay

<US>

<GS>

<ESC >

<CAN>
<ETB>
<SYN>
<NAK >
<DC4>
<DC3>
<DC2>
<DC1>
<DLE>
<RS>

<SI>

<SO>

<FF>

<VT>

<HT >
<BS>

<BEL>
<ACK>
<ENQ>
<EOT>
<ETX>
<STX >
<SOH >
<NUL>
<SUB>

32
29
27
25
24
23
22
21
20
19
18
17
16
30
15
14

11

NO—NWPMMOOIo

»

110001101110
111100001100
111100111001
111100111110
111100111111
0001010111000
0001010111001
0001010111010
0001010111011
0010100011011
00101000110101
111100001°10100
11110000110101
001010001101000
001010001101001
110001101111000
110001101111001
110001101°1111010
110001101'111011
110001101111100
110001101111101
110001101111110
110001101111111
111100001101100
111100001101101
111100001101110
111100001101111
111100001110000
111100001110001
111100001110010
111100001110011
111100001110100
111100001110101
111100001110110
111100001110111
111100001111000
111100001111001
111100001111010
111100001111011
111100001111100
111100001111101
111100001111110
111100001111111
1111.00112000000
111100111000001
111100111000010
111100111000011
111100111000100
111100111000101
111100111000110
111100111000111

