
extended Mail Transfer Protocol (XMTP)

J. Gordon Beattie, Jr., N2DSY
Andrew R. Funk, KB7UV
Frank Warren, KB4CYC

The Radio Amateur Telecommunications Society
206 North Vivyen Street

Bergenfield, New Jersey 0 7 6 2 1
Telephone: +1.201.387.8896

ABSTRACT

The amount of store-and-forward traffic in the Amateur Radio Packet
Network has increased to the point where significant optimization of
the message forwarding scheme for packet bulletin board and other
servers is required. The purpose of this paper is to present an
enhanced message forwarding system which we call the "extended Mail
Transfer ProtocoF or XMTP which addresses this requirement.
Further, an overall client/server model is included as a possible
implementation enhancement to systems which plan to implement this
protocol.

INTRODUCTION

In the current Amateur Packet Radio Network there are servers which
are usually based on MS-DOS computers which use the ARRL AX.25 Link
Layer Protocol to move store-and-forward messages across the network.
The ROSE X.25 networking protocol is used in the authors' network and
for the examples in this paper, but any of the other common
networking protocols could be substituted.

The basic application environment architecture for the evolving
ROSErver environment depends on the ROSE X.25 and the AX.25 protocol
to convey bits and bytes. Over these connections (or '*path" for all
you connectionless folks), the ROSErver environment uses a
client/server protocol called "Serialized Transaction Interface
Protocol~~ or S-TIP to provide a remote operations invoker/responder
facility. One of the Wsers'l of S-TIP is XMTP. XMTP depends on the
underlying services of S-TIP to provide the facilities of a
transaction monitor. These functions include signaling and
verification of transaction completeness, confirmation delivery if
required by the S-TIP user, transfer syntax signaling including
compression, application addressing, and application capability
negotiation between systems.

S-TIP will be described in a future paper, but it is based on some of
the concepts and capabilities of CCITT X.219/X.229 Remote Operations
Services, Sun Microsystemsf Remote Procedure Call (RPC) and the
communications facilities of the *lMINIX1l operating system.

The role of XMTP is to provide a uniform and extensible platform for
the movement of store-and-forward traffic. XMTP can be implemented
using the current message header data, but the use of additional

header elements as found in either the CCITT X.400 Message Handliny
System and RFC-822 is strongly recommended. The convergence of these
two protocols as outlined in RFC-987, RFC-1138 and RFC-1148 would
facilitate the automatic interface of a great body of existing OS1
and Internet software and systems. Gateways are only a part of the'
benefit. The software available would improve the usler interface,
add multiple personal mail delivery and conference services, allow
for mixed graphical, voice and text messages, as well as other
interesting features.

XMTP FEATURES

XMTP provides for the rapid transmission of store-and-forward
messages between systems. The data flow diagrammes inlcuded in this
paper illustrate the connection-oriented process, but the same basic
procedure could be used in connectionless or ffmulticastff environments.

The current dialogue between store-and-forward systems causes systems
to send and wait for a response. In most networks, the network
transit delay is high and this wastes time. In order to reduce this
loss of time, XMTP optimizes the dialogue by reducing the number of
times that a transaction "holds-up *I the data flow during a forwarding
cycle. The basic changes that XMTP brings to the sto:re-and-forward
message environment are:

1. The pre-registration of the capabilities of a system eliminates
the need to exchange them before each data transfer. The current
YSID" or Smart System ID which is sent in brackets Ir[.@.]I1 at the
start of every session is now eliminated except when such a message
is received from the other system. This allows for backwards
compatibility as well as for the recovery of peer system capability
information after a crash or change.

2. The headers of all mail queued for forwarding are sent in a single
exchange. Currently, systems send a short header inc:Ludinq the
Bulletin or Message ID and wait for a ffgo/no-goff response.- After
receipt of a frgoff, the system sends the message and then waits for an
acknowledgement before sending the next header.

3. XMTP supports simultaneous bidirectional forwarding. This
reduces the store-and-forward transfer time significantly by filling
both directions of the channel at the same time.

Some have suggested that all messages should be compressed into a
single file and then transmitted. This could lead to very large
transfer files and possibly cause the less than timely delivery of a
particular message. XMTP submits each message to S-T:[:P as a separate
transaction. Each transaction is compressed, transferred, and
decompressed by the underlying service provided by S-TIP. S-TIP does
not control this process, but simply acts as directed by XMTP. As
such, if future changes to XMTP include the transfer of mul.tiple
messages in a single compressed package, then S-TIP will
transparently handle the requirement.

2

XMTP FLOW DIAGRAMMES

XMTP supports three basic modes of operation: Simple Forwarding,
Polled Forwarding and Duplex Forwarding. This section outlines the
data flow process for each mode. The flow diagrammes along with
a general architecture figure are at the end of this paper.

SIMPLE FORWARDING CASE

In the Simple forwarding case, the connection is established and then
a Mail-Q-Event-Report is sent to the receiving system. This report
summarizes all mail traffic for that system. It provides information
which allows the receiving system to determine the priority which it
will use to receive these messages, as well as if there is sufficient

space and if the message is a duplicate. The message elements are
outlined in the "XMTP DATA ELEMENTS** section of this paper. The
receiving system then sets the appropriate status for each message on
the sending system by sending a Mail-Q-Set-Status message. The
sending system then starts to send each message as
Mail-Create-Requests without waiting for individual acknowledgements.
It should be noted at this point that what the sending system is
doing is creating a message just like the one it has, on the
receiving system. The receiving system can then send
Mail-Log-Event-Report-Request messages reflecting the successful
receipt of one or more messages. This may be repeated as additional
messages are received.

SIMPLE POLLING CASE

In the Simple polling case, the connection is established and then a
Mail-Q-Set-Request is sent to trigger the **sending** system into
providing a list of queued messages. The sending system then sends a
Mail-Q-Event-Report to the receiving system as was done in the Simple
Forwarding case. The receiving system then sets the appropriate
status for each message on the sending system by sending a
Mail-Q-Set-Status message. The sending system then starts to send
each message as Mail-Create-Requests without waiting for individual
acknowledgements. It should be noted at this point that what the
sending system is doing is creating a message just like the one it
has, on the receiving system. The receiving system can then send
Mail-Log-Event-Report-Request messages reflecting the successful
receipt of one or more messages. This may be repeated as additional
messages are received.

DUPLEX FORWARDING CASE

In the Duplex forwarding case, the flow is the same as in either or
both of the other two cases, but data is allowed to flow in each
direction at once.

ACKNOWLEDGEMENTS

The authors wish to thank all the users of the ROSErver/PRMBS
software package as well as it's author, Brian Riley, KA2BQE, for
their work and comments on the protocol and the research that went
into this paper. The authors also would like to thank Nancy Beattie,
N2FW1, Ted Beauchamp, KA2USU, David Elliot, KD6TH, Tom Moulton, W2VY,
Bob Nelson, KBlBD, Buck Rogers, K4ABT, Don Rotolo, N2IRZ, and Bill
Slack, NX2P for their research and observations.

XMTP DATA ELEMENTS

[S-TIP-.../XMTP-...I

This is the Smart System ID message element included in the rr[]ff
message exchange performed after connection time. This signals each
side that S-TIP and XMTP Services are available and that the Application
Manager Managed Object is present. Specific selection of a suitable
string is needed.

S-TIP Header

The S-TIP Header is based on the OS1 model and uses the
connectionless, Unit-Data Services to implement the protocol. Each
Protocol Data Unit (PDU) is sent to the service interface by an
application, and then delivered to a peer application entity. Some
minimal state information about the PDU is maintained by the S-TIP
provider. Some changes and enhancements are currently being
implemented. Please contact the authors for the revised format.

S-TIP Header ::= SEQ OF (
Network- Source Address, Dest Address, Header Chk,

Data Length
Transport- Source Address, Dest Address, Checksum
Session- Source Address, Dest Address
Presentation- Source Address, Dest Address, PC1
Application Context Name
Operation Code /* Such as mail message type *,/

Mode / Best Effort, Atomic, etc. */
InvokeID /* This is a transaction number 'k/
1

Mail-Q-Event-Report

This message is a notification sent by a system to signal the other
system of the availability of mail. This message may lbe sent any time
during a communication. The format is as follows:

Mail-Q-Event-Report ::= SEQ OF (
S-TIP Header
Object Class = Mail-Q-Summary-Record
Object Instance = SystemName&RecordID
Operation Time = UTC
Operation Type = Mail-Q-Event-Report
Operation Data = SET OF Mail-Q-Record
1

Mail-Q-Record ::= SEQ OF (
Object Class = Mail-Q-Record
Object Instance = Mail-Q-RecordID
Date/Time = UTC
Hold Date/Time = UTC
Mail Type ::= CHOICE (P, T, B, 0, . ..)
Status ::= CHOICE (Y, N, D, K, . ..}
Q-Status ::= CHOICE (G, R, H, 0 0 0 1
Size = Uncompressed Byte Count
To = FullyQualifiedAddressee
From = FullyQualifiedAddressee
Subject = OctetString
Path = SEQ OF (Mail-Q-RecordID)
)

Mail-Q-RecordID ::= SEQ OF (
Message Number
II @ II
SystemID
1

FullyQualifiedAddressee ::= SEQ OF (
CHOICE (Callsign 1 ApplicationName)
Device ::= Callsign + Unique Identifier
Organization ::= OctetString /* the # stuff */
Locality ::= CHOICE (State 1 Province 1 etc.)
Country ::= IS03166-Alpha-2
1

Subject = OctetString

The default values for Q-Status and Hold Date/Time are '!H'* and *'O?
Q-Status values are: G for Get, R for Remove and H for Hold.

Mail-Q-Set-Request

This message signals the other system to alter the status of
Mail-Q-Record Q-Status attribute. This change can cause a mail
message to be held until a later time (H), removed (R), or retrieved
6) 0 The default values for Q-Status and Hold Date/Time are rrH*l and
II 0 If . This message may be sent anytime during a communication. The
format is as follows:

Mail-Q-Set-Request ::= SEQ OF (
S-TIP Header
Object Class = Mail-Q-Record
Object Instance = SystemName
Operation Type = Mail-Q-Set-Request
Operation Data = SET OF Mail-Q-Status
1

Mail-Q-Set-Status ::= SEQ OF (
Object Class = Mail-Q-Record
Object Instance = Mail-Q-RecordID
Hold Date/Time = UTC
Q-Status ::= CHOICE (G, R, H, l 0 l

1

1

5

Mail-Create-Request

This message signals the other system to create a new mail object.
The default values for Q-Status and Hold Date/Time are @@H" and ffOff.
This message may be sent anytime during a communication. The format
is as follows:

Mail-Create-Request ::= SEQ OF (
S-TIP Header
Object Class = Mail-Record
Object Instance = Mail-Q-RecordID
Operation Time = UTC
Operation Type = Mail-Create-Request
Operation Data = SEQ OF (

Mail-Q-Record
Message-Body
>

1

The default values for Q-Status and Hold Date/Time are I@H" and rrO*l.
The Object Instance (Record ID) of the Mail-Create-Request is the
message number used on the local system. The sender will always use
its local message number. The receiver will replace the received
message number with its own local value.

Mail-Q-Set-Request

This message signals the other syste:m to send the list of
Mail-Q-Records. This message may be sent anytime during a
communication. The format is as follows:

Mail-Q-Set-Request ::= SEQ OF (
S-TIP Header
Object Class = Mail-Q-Record
Object Instance = SystemName
Operation Type = Mail-Q-Set-Request
Operation Data = SET OF (Mail-Q-RecordID)
1

Mail-Q-Set-Response

This message is the response to the request for a list of
Mail-Q-Records. The format is as follows:

Mail-Q-Set-Response ::= SEQ OF (
S-TIP Header
Object Class = Mail-Q-Summary-Record
Object Instance = SystemName&RecordID
Operation Time = UTC
Operation Type = Mail-Q-Event-Report
Operation Data = SET OF Mail-Q-Record
1

New ProtocoL Impiementa-tion

IBBC

N e w P r o t o c o l Mach;ne

f WstQck

extended Mail Transfer Protocol (XMTP)

Simple Forwarding Case

System A
>
<

Connection Request
Connection Accept

System B. -
5
#<

> Mail-Q-Event-Report >

< Mail-Q-Set-Request <

> Mail-Create-Request (Msg 1)- >

> Mail-Create-Request (Msg 2)- >

> Mail-Create-Request (Msg 3)- >

> Mail-Create-Request (Msg 4)- >

< Mail-Log-Event-Report-Request (1-4) <

extended Mail Transfer Protocol (XMTP)

Simple Polling Case

System A System B
< Connection Request <
> Connection Accept >

C Mail-Q-Set-Request <

> Mail-Q-Event-Report >

< Mail-Q-Set-Request <

> Mail-Create-Request (Msg 1) >

> Mail-Create-Request (Msg 2) >

> Mail-Create-Request (Msg 3) >

> Mail-Create-Request (Msg 4) >

< Mail-Log-Event-Report (l-4) C

extended Mail Transfer Protocol (XMTP)

Duplex Forwarding Case

System A
>
<

>

Connection Request
Connection Accept

Mail-Q-Event-Report

System B
>
<

>

< Mail-Q-Event-Report <

<

>

Mail-Q-Set-Request

Mail-Q-Set-Request

<

>

>

<

>

<

>

Mail-Create-Request (Msg 1)-

Mail-Create-Request (Msg A)-

Mail-Create-Request (Msg 2)

Mail-Create-Request (Msg B)-

Mail-Log-Event-Report (A-B)

>

<

>

<

>

>

>

<

Mail-Create-Request (Msg 3)-

Mail-Create-Request (Msg 4)

Mail-Log-Event-Report (l-4)

>

>

<

10

