
Proc. ARR.L l&h Computer Netwotking Confctmce, 1991

LOSSLESS DATA COMPRESSION ALGORITHMS
FOR PACKET RADIO

W. Khmer, VE4WK

DepNUNntofEkctricalandcomputerEngineering
university of Manitoba

Winnipeg, Mania CanadaR3T2N2
Fax: (204) 2754261

eMail: Kinsne@ccm.UManitobaCA
E-mail: VEAWK@VEQKV.MB.CAN.NA

Abstract

This paper is a review of important data coinpressicm
methods and techniques, showing their evolution from the
simplest data suppression to the modem adaptive
(universal) methods. Selected lossless techniques for
critically important da@ requiring perfect compression and
reconstruction are presented. Lossy techniques for
imperfect data such as speech, images, biological signals,
and casual text are mentioned.

1. INTRODUCTION

1.1 Motivation

Transmission of data over telephone lines and packet
radio, using standard data and file transfer protocols, as
well as storage of data on magnetic media and in other
storage devices can both be improved by data compression
techniques. Such techniques reduce space, bandwidth, and
input/output load requirements in digital system. For
example, the statistical variable-length Huffman technique
mu@52] compresses text by 20%. This technique requires
prior knowledge about the statistics of the file to be
compressed Evenbetterresultsmaybe&tainedwiththe
arithmetic coding technique, as implemented by Witten,
Neal and Chry [wiNC87]. The run-length encoding used
in facsimile can compress a single 81/2x11 inch sheet so
that its transmission can be done in 30 seconds on a
voice-grade line at 9600 bps. The popular adaptive
Lempel-Ziv-Welch (LZW) general purpose technique
welc84J can compress data (text., numeric, mixed, and
bitmapped images) by 40 to 60%. This technique does
not require a priori knowledge of the file structure, data
types, or usage statistics, and can operate on files of any
length. The compression is noiseless and reversible in

that a decompressed file is the exact image of the source
file. This contrasts with data reduction and abstraction
techniques in which data are deleted from the source.
Neverthelas, such lossy data compression with fi-actals,
neural netwaks, and wavelets are important techniques for
research and practical applications, as they can achieve
impressive compression ratios as high as 10,OOO:l
ms9la].

There are many other techniques capable of
compressing and decompressing data efficiently [Stor88],
weld87], [Lync85], megh81], [KinMa]. Which one is
suitable for a given data or fde structure? How should we
measure the efficiency of the techniques? How easy is it
to implement them? These and other questions have to be
answered before using the best methods and techniques.
Therefore, the purpose of this paper is to provide a review
of the basic data compression methods and techniques, and
to show their evolution from the simplest data
suppression to the modem adaptive (universal) and lossy
methods.

1.2 Models of Data Compression

Datacompressionreferstotheremovalof&lndancy
from a source by a proper mapping into codewords,
carrying~~necessary iIlh7nationabouttheso~so
that &compression could be possible without loss of
information. The compression and decompression
~areillustrat&inFig. 1.

A stream of p input message symbols (source
characters) M is compressed into a smaller string of q
uxle~ords A(M) according to a particular algorithm, and
passed through a medium (data storage or communication
links). At the receiver, the compressed data A(M) are

67

mapped back into the original source M, without any
losses. The compression can be done in either hardware,
software, firmware, or any combination of them.
Software solutions may be applicable for slow data
streams (Mbit/s), while modern parallel pipelined hardware
solutions may provide speeds of hundreds of Mbit/s.

Fig. 1. A model of transparent data compression.

The compression and decompression processes may
have a number of attributes, as shown Fig. 2. A
compression is reversible if the source data can be
reconstructed from the compressed codewords. The
compression is noiseless when no information is added
into the decompressed data, thus making it the exact
replica of the source. It is also lossless if no information
is removed from the recovered data. For example, the
Huffman, LZW and WNC techniques are noiseless and
lossless. In contrast, nonreversible (or lossy) mapping
(data compaction or abstraction) removes redur&ncy using
approximate methods, and the exact reconstruction of the
source is not possible. For example, speech compressed
using the linear predictive coding (LPC) or adaptive
differential pulse code modulation (ADPCM) algorithms
anmt be reconstructed exactly.

Compression is called transparent when it is done
outside any interaction with a computer programmer.
Compression that is not transparent is also called
inferactive. Compression may be either statistical (e.g.,
Huffman) or nonst;rtistical (e.g., LZW). In the statistical
techniques, symbol usage statistics or data types must be
provided in advance, based on either an average or local
analysis of the actual data. Since the Qatistics gathering
process requires a single pass and the compression
another, these techniques are also calkd two-pass
techniques. In contrast, nonstatistical techniques employ

ad-hoc rules designed to compress data with some
success. The statistical techniques may produce codewords
that are either ofj2ed length (L.ZW) of variable length
(Huffman), with the former giving higher compression
d0.

; r ‘“““==REVERSBLE
(NOISELESS)

-TRANSPARENT
WTERACTIVEL

~TATISTKXL
I NOMTATtSTCM

VARIABLE-LENGTH
FIXEDLEJSTHL

JDAPnVE
L NONADAPTIVE

STREAM
c BLOCK (INCREMENTAL)

JIEGENEFIATIVE
h NOWF3ECXNERATlVE

Fig. 2. Attributes of data compression methods.

The statistical and non.statistical techniques may also
be classified as either adlaptive or nonadaptive. The
adaptive (or dynamic) compression does not require
advanced knowledge, and develops the necessary
translation tables (e.g., LZW) or the data statistics (e.g.,
dynamic Huffman and WING) based exclusively on the
incoming source stream. They are also called one-puss
techniques. The nonadaptive (or static) techniques
generate codewords, without affecting the original
translation rules or data ;statistics. Depending on the
method of outputting the codewords, a compression
technique may be classified as strezun or block. A stream
technique outputs a codeword as soon as i.t is available,
while the block technique must wait until the
compression of a block is completed. For example, the
arithmetic coding is a block technique, with recent
improvements that include incremental operation
whereby the entire block is broken into smaller orres that
are output more often (e.g., WNC). Compression may
also be regenerative or nonregenerative. In the
non-regenerative techniques, the translation table must be
transmitted to the receiver, or else decompression is not
possible. The regenerative methods do not require the
transmission of the translation tables, because they are
capable of recommcting the table from the codewords. If
thecompressiorianddecompressionphasestakethesame
effort (time and real estate), then it is called symmetric.
Clearly, the methods that are reversible, noiseless,
lossless, transparent, a,daptive, regenerative, and
symmetric seem to be the most desirable.

68

1.3 Redundancy and Entropy

Tbeamountofdatawmpressioncanbe~uredby
ttMmmpressbnratiodefiias

wherekisthenumberofbitspersymboKntheor@nal
message, p is the number of source characters in a
message,nisthenumberofbitsinacodewoad,andqis
the number of codewords. Thus, pk is the number of
bits in the original data string, and qn is the number of
bits in the compressed string. For example, & = 2:1
signifiies common by 5096.

Redundancycanalsobeexpressedintermsofentropy
of a code alphabet, r, corresponding to a string (source)
alphabet, S, which in turn is taken from a symbol
alphabet C. The co& alphabet is also called dictionary,
D, which contains a set of strings, but may also include
C or even S. The string alphabet is first-order if the
pobability of taking the next symbol does not depend on
the previous symbol in the generation process of the
string.

Entropy of a first-order source alphabet, S, taken
from a binary symbol alphabet C(O,l) (also representing
the number of levels in the signal used to transmit the
message) can be derived in the following form

Ha L-c PilogZPi

i=l

where pi is the probability of occurrence of wh symbol
in S, m=ISI is the number of symbols in the source
alphabet,andthebasebofthelogarithmisequaltothe
length of the symbol alphabet b=lcl(2 in this example).

Redundancy R, in the source alphabet, S, is
measured as the difhmce between a unit of information
HI far the alphabet, S, and entropy Ha a~ given by Eq.
2. Thus,ifHl is

HI = logzm

Ra = logzm - Ha

which indicates that if the character probabilities pi are
equal, the entropy must be Ha = logzm, and there is no

Tknumberofbits,Agquhdtoencodeasymbol
wthoSe~tyisp~canbeestimatedfiom

where[x] is the ceiling filnction producing the closest
integer greater or equal to x. In piractice, the codeword
lengthmaynotbeexactlyqualtothisestimate. Fopthe
actualcode,wecancalculatetbeentropyoftheco&
alphabet, c corresponding fo the source alphabet, & by
taking the sum of products of the individual codeword
PI&&Z&S pi and the actual WHesponding codewad
lmgths, &iv

(9

This diffmence between the tie entropy and the source
entropy shows the quality of the actual code; if both are
equal, then the code is called perfect in tk injivmation-
theoretic sense. For example, Huffman and Shannon-
Fan0 codes are close to perfect in that sense. Clearly, no
statistical code will be able to have entropy smaller than
the mlrce entropy.

1.4 Classification

Figure 3 shows the major lossless data compression
methods, such as the run-length, statistical and xlaptive,
as well as a class of lossy compression metkxls used to
reduce the bit rates of speech signals, images and
biological signals. The progmnmed and hybrid methods
may be either bssless or lossy or combinations of both,
and will not be discussed here in detail. This section
presentsanoverviewoftheInajor-,anddiscusses
some techniques belonging to the simple run-length,
statisticalandadaptivemethods.

Fig. 3. Compression methods.

2. COMPRE!GION METHODS

2.1 The Programmed Method

The programmed method requires interaction with the
application ver, who determines an efficient way
of removing application-specific redundancy from the
source, and programs it into the application. Such
software is not very portable, and the development cost
may be prohibitive. So, this nontransparent approach
will not be discussed here. Instead, we shall concentrate
on methods that have universal techniques and
ccnresponding algorithms that can be made transparent

Another form of a programmed data compression is
an object-oriented description of an image, and a
programmed description of attributes. For example,
Adobe’s PostScript may reduce the facsimile image by
10: 1 and considerably reduce the description of fonts
transmitted for printing.

2.2 The Run-Length Method

As shown in Fig. 3, this method includes the
following techniques: null suppression with a pair, null
suppression with a bit map, arbitrary character
suppression with a triple, nibble (half-byte) packing, and
delta encoding. These techniques will be described briefly
next.

An early compression technique, the n u II
suppression with a pair, was designed to suppress blanks
(nulls) in the IBM 3780 bisync protocol, with 30-5096
throughput gain. A sequence of blanks is substituted by
an ordered pair of characters (SC, Count) where SC is a
special suppression indicator, and is followed by the
number of blanks to be suppressed. For example, a string
ABcM>bbbbbXYZ is reduced to ABCS$XYZ.

Another technique is the null suppression with a bit
nap. If the specific characters such as blanks are
distributed randomly within a string, the blank
suppression technique cannot be used. Instead, we can
subdivide the string into substrings whose length matches
the number of bits in each character (word), and the
p&ion of the blanks in a substring can be marked with
individual bits in the word, thus creating a bit map whose
compact representation can be placed within each
substring.

This general run-length technique may be modified for
facsimile which has many white (0) and black (1) pixels.
The pixels may Ix represented by individual bits in a word
in a bit-mapped manner. Thus, four bytes can carry 32

pixels. If we encode a group of white pixels by a single
byte and bkk pixels by another byte, then the run-length
compression can be improved. For example, a four-byte
sequence containing the numbers 150/1Qr220/!5 represents
150 white pixels, followed by 10 black pixels, which are
followed by 220 white and 5 black pixels. This has the
potential of 32:l compression ratio (total 1024 pixels
against 32 when each bit represents a single pixel only).

Another technique is the arbitrary character
supprcsdon with a triple which is a direct extension of
the null suppression to an arbitrary character. Instead of
the ordered pair chmcters, we must now use three
characters: the special suppmsim indicator, followed by
thereQeatedcharacterandtl~charaaercount

The nibble (half-byte) packing is a modification of
the run-length and bit-mapping proceclur~. Rather than
suppressing the repetitive characters, different characters
may have identical upper nibbles which could be
suppressed. For example, the upper nibble in ASCII
financial characters could be suppressed, and the lower
nibbles could be packed. The same would apply to the
EBCDIC representation.

Still another technique, the delta encoding, is an
important extension of nibble packing. This relative
encoding scheme applies to substrings that are similar,
thus the difference (delta) between the substrings would
contain only few non-zero bits or characters, and such
delta substrings could be compressed using the above
suppression techniques. Examples of such strings could
be found in telemetry and facsimile.

In telemetry data, if measurement data are slowly
varying within a period of time, their values do not
change significantly and only differences could be
transmitted, leading to smaller numbers which could have
more compact representation. The delta encoding could
run until either the range o:f the small numbers is exceeded
or data integrity would squire a periodical reset of the
absolute value.

In facsimile data, the straightforward run-length
encoding can be used to suppress the white or black
pixels. The delta technique further reduces the scan line
data. If a reference line has been transmitted without
compression, only the difference of the subsequent lines
INiybtXWpkdtOrecoslsbUCtthe~~

2.3 The Statistical Method

This method includes the following techniques:

diatcmic encoding, pattern substitution, and variable-
mm==w!l*

The diiaftic ending technique takes two characm
and re@ces them with a single character, thus having
fmed length and a possible 29 compression ratio. Since
thenumberofspecialcharactersislimi&x¬allthe
phscmbecompressed. Instez&themostfrequentpairs
are selected for compression. The pairs must first be
identifiied by a file analysis mgram, and the mm f&quent
pairs ar selected as candidates for compresskm. Extensive
studieshavebeendoneondifferentdatatypestoidentify
such pairs for English, text, FORTRAN, COBOL and
BASIC [e.g., Held87].

The pattern &sfiWion technique is an extension of
thediatomicencodinginthatitalsoassignsspecialshort
codes to common multicharacter groups. This scheme
may benefit files containing computer languages (e.g.,
WRITE, READ, etc.) or natural languages (“and”, “the”,
etc.). The substitution can be done by single codes or
special pairs such as $n, otherwise never appearing in the
string. Compressions of 20% were reported.

Another technique is the variable-length encoding.
AI1 the previously discussed techniques employ fmed-size
character co&x and produce fmed-size codewords. A more
compact code can be achieved by assigning shorter
codewords to fhxpent characters and longer codewords to
less frequent characters or their groups. This approach
was used by Samuel Morse when he selected short sounds
for the frequent characters (E,T,A,N) and longer sounds for
the less frequent ones. There are three effective variable-
length whniques such as the ordinary and generalized step
codes, the Shannon-Fano, Huffman, and WNC arithmetic
coding, as described in Section 3.

2.4 The Adaptive (Universal) Method

Adaptive (or universal) techniques can be seen as
generalizations of many oftheprevious techniques. The
key idea here is that 110 storisrical bwMge is necessary
to convert the avaiIable input stream into codewords and
vice versa. Instead, an optimal conversion is possible,
using a form of learning about the structure of either the
source stream or the codeword stream. Thus, the
tectKAiquesarecapaMeofproducinggoodcode~,eithet
without prior knowledge about the data statistics, or even
better codewords with data statistics acquired by
observation during the compression phase. Examples of
fuchadaptive~nonregenerafivetechniqueSinckde
the Huffman and arithmetic code WNC. Examples of
&ptive rmstatktical regenerative techniques are due to
Lempel and Ziv (LZl [LeZi76], [ZiLe77] and LZ2

.

[ZiLe78]), Storer (heuristic dictionary algorithms)
[Stur88), and Iampel, tiv and Welch (LZW) welc84],
[KiGr91]. 0th~ adaptive met&Is are being developed,
includinganalgorithmforbinary~andbinary&e
alphabet, a memory efficient technique based on fused
trees, techniques requiring a small number of m
per encoded symbol. Some of these techniques are
&scriibyKinsner(Kins9la],andtheb&cideasbehind
theLZwtechniqware~in~m3.

2.5 Lossy (Approximate) Methods

Thepreviousmethodsandtechniquesarelosstesessand
noiseless in that nothing is lost during the data
compression and nothing is added during the
reconstruction process, respectively. These properties
areessentialinperfectdatainwhicha~ofasinglebit
may be catastrophic [Kins90]. On the other hand,
imperfect data such as speech, images, biological signals,
and casual electronic mail text may tolerate minor changes
in the source and still be sufficient after their
reconstruction, according to a distortion measure. This
class of lossy techniques may produce extremely large
compression ratios (10,000: 1). There are three emerging
classes of compression techniques with enormous
potential based on fractals, neural networks, and wavelets.
We are working on all three techniques related to speech
and pictures -la], -lb].

3. EXAMPLES OF ALGORITHMS

3.1 The Shannon-Fan0 Coding

The Shannon-Fan0 (S-F) code has efficiency
approaching the theoretical limit and is the shortest
average code of all statistical techniques. The code is also
good because it has the self-separating property (or the
prefm proper~) because no codeword already defined can
become a prefu in any new codeword. This property in
theS-Fcode&xlstotheabilityto&xodeit”onthefly”,
withoutwaitingforablockofthecodetobereadfiirst.
ThemainquestionisbowtogeneratesuchanoptimaI,
informatiaMiiiiientandself-mgcode? Theanswer
is in the application of an old principle of binary search
tree, BST (or halving, cx binary chopping). How should
we hahe the entire set of symbols to achieve the
optimum variable-length code? A viable approach is to
use the overall (joint) probability of symbols and assign
thefrstO(atl-tkechoi~isarbitrarycltthisfirststep)
tothesymbolsabove0.5andthefirstl(orO)tothose
with joint probability not greater than 0.5. This
subdivision continues on the halves, quarters and so on,
ufAtilallthesymbolsarereac~asshowninFig.4.

Fig. 4. Shannon-Fano top-down binary DXXA

3.2 The Huffman Coding

The Huffman coding scheme muff521 belongs to the
same class as the Shannon-Fano technique in that both are
statistical, variable-length, optimal-length, self-separating,
and use the binary decision principle to create the code.
The difference lies in the application of the BST; i.e., the
S-F code is created by top-down binary chopping, while
the Huffman co& is formed by bottom-up binary f&sing.
As already described, the S-F code is created by
subdividing the symbol table set into two groups whose
joint probability is as close to 0.5 as possible. Then, the
halves are divided into quarters, and so on, until all the
individual symbols are covered. The method is termed
top-down because the process starts from the root of the
tree where the global probability is 1.0 and progresses to
the leaves.

In contrast, the Huffman code formation starts from
the leaf level and progresses to the root of the tree by
fusing the probabilities of the individual leaves and
branches, as shown in Fig. 5. Thus, this method
emphasizes the small differences between the leaves, while
the S-F technique operates on averages. Although the two
techniques appear to be the same on short codes, the
differences will be discussed later in the section.

-Jumv BolTOM-UP
SWBOC

pI BEURY TREE
0

E 0.5825 O‘dk5f 0 E
0 l.WOO

f 0.1875 O.lm-, 0.4375

A 0.1875

0 0.0825

Fig. 5. Huffman bottom-up binary tree.

We have implemented both S-F and Huffman
compression techniques, using the C language on the IBM
PC. The code is described in puKi9la], and experimental
results are present& in puKi9lb, this conference].

3.3 Dynamic and Higher-Order Huffman

TheSoFisbetterthantheHuffmancodeonalphabets
with spread probabilities (large variance), while the
Huffman is better on alphabets with an even distribution
of the probabilities (small variance). Although very
attractive from the efliciency point of view, both methods
have problems. The problems include the limited size of
the translation table (a 25tkntry table for 8-hit symbols
is sufficient for single charactm only), diffiiult (kcmiing
process on binary trees, tlhe u priori knowledge of the
alphabet statistics, leading to two passes over the data to
be compressed, and variability in the statistics on large
files requiring an adaptive analysis of the data and
transmission of mOte than one translation table.

There are many modifications of the basic static
Huffman and S-F algorithms to cope with those and other
problems [Welc84, Regh81, Held87, Stor88]. In the
original paper [Huff52], Huffman considered non-binary
symbol alphabets, ICI>2 in addition to the binary case.
Others considerd code allphabet r with unequal cost, as
well as source alphabet wi.th inaccurate probabilities and
trie (to distinguish it from a tree, [StorSS]) construction.
Implementation issues are discussed in [Pech82] and
[McPe85]. Many other references are provided by Storer
[Stor88, Chapter 21 and (Kins9la].

The dynamic Huffman code was introduced by Faller
fFa1173] and Gallager [Gall78]. A naive dynamic Huffman
encoding and decoding would start with a source alphabet,
S, whose symbols have equal probability. The
probability distribution is then updated after a character
has been encoded or decoded. The trie (not tree)
construction algorithm must be deterministic for both the
encoder and decoder so that the key procedures such as
halving decisions and tie breaking are done identically.
Although optimal, this method is inefficient because the
trie must be reconstructed after each character in the
message stream. Improvements and generalization of the
dynamic algorithm, as well as an extension of the
balanced brie cmcept is the splay tree and an alternative to
this approach the transposition heuristic, are discussed in
mla].

3.4 Arithmetic Coding

Arithmetic coding belongs to the statistical meW,
but is different from the Huffman class of coding
techniques in that it develops a single codeword from the
input symbol stream by interval scaling, using the f6cta.l
similarity principle. (Notice that this fractal similarity
principle has never been pointed out in the arithmetic
coding literature before). In contrast, the Huffman

72

ted@e develops axlewords by a table lookuppmce&~,
with the table obtained from a bottom-up BST. Both
techniquesusestatisticalmodelsofdatathatcanbeei&r
o&aid a pion’ (fued model) or adaptively (dynamic
model). While Huffman coding 8enefates codewords in
response to individual symbols (stream technique),
arithmetic coding either waits far all the symbols fo arrive
prior to sending the codeword (block technique) cxoutputs
partialcodewordswhendreintervalhasbeenbcatedupto
a-fined thr&okl (incremental technique). AMmetic
coding, and PafticUtarly the implementation by Witten,
Ned and Cletuy wiNC87] is shown to be superior to
Huffman coding. A tutorial on arithmetic coding is
provided by Langdon [Lang84], -la], and a class of
such techniques is presented by Rissanen and Langdon
-791. We are working on an implementation of the
arithmetic coding.

3.5 Lempel-Ziv=Welch (LZW) Coding

The well known static LZl [Lezi76], [ziLe77] and
dynamic I22 ([ziLe78]) nonstatistical algorithms due to
Lempel and Ziv can be classified as adaptive (universal)
techniques. The key i&a here is that no statistical
knowledge is necessary to convert the input stream into
codewords and vice versa. Instead, an optimal conversion
is possible using a form of learning about the structure
of either the source stream or the codeword stream, thus
justifying the name “adaptive”. This class of techniques
converts variable-length input strings to constant-length
output codewords, using a dictionary (also called a
conversion table). In the case of Huffman-type coding,
the input strings are of constant length, while the output
codewords are of variable length, and a fixed-length
dictionary is provided to both the encoder and decoder. In
the case of Lempel-Ziv-type coding, the dictionary is of
variable length, and the encoder creates its local
dictionary, D, in step with the incoming strings.
Similarly, the decoder reconstructs D in step with the
incoming codewords, thus making the method
regenaative.

The learning in the algorithm depends on the
following four heuristics: (i) initialization heuristic, IH,
(ii) matching heuristic, MH, (iii) updating heuristic,
UH, and (iv) deletion heuristic, DH [Stm88], [Kins9la].
The dictionary D is first initialized to an initial string
set Do which includes at least the string alphabet s in
Storer’s dictionary approach, or is empty in the Lempel-
Ziv approach. The encoder dictionary D is COWIUC~~~ by
rqmtediy mulching the incoming character stream to the
entriesinitsD,untilanewstrings,isfound(oruntil

any other significant event occurs). The compression

results from a substitution of sm with an index
representingthestfing(providedthelengthoftheindexis
smaller than Is,l where I4 signifies the length of an
object (a)). Now, D is upduted according to the
matching sm and the current contents of D. If the new
updateexceMsthesizeofD,thensomeentriesmustbe
d&ted, using a deletion strategy. Since none of the four
major activities has a single form, they are called
heuristics. It is seen that a large number of adaptive
techniquescanbederived,&~gondrechoiceofthe
hli%iStiCs.

The LZl adaptive (universal) technique has received
extensive attention in literature because it can be the
perfect algorithm in the information-theoI& sense and
may be the best algorithm for many applications. Serial
and parallel implementations of the scheme are discussed
i n [Stor88]. The LZW algorithm is another
implementation of the LZl algorithm welc84]. Our
LZW code is based on Nelson’s and Regan’s
implementations FJels89], [Rega90], and is included in
wuKi9la]. This C language implementation runs on an
IBM PC, and is portable to machines supporting l&bit
integers and 32.bit longs. It is limited to arrays smaller
than 64 Kbytes on the MS-DOS machines (12 to 14 bits
used). Experimental results obtained with our benchmarks
are presented in DuKi9lb, this conference].

4. STATISTICAL ANALYSIS OF
FILES PROGRAM

In addition to implementing the Shannon-Fano,
Huff- and LZW algorithms, we have also developed a
statistical analysis of files (STAF) program for data
compression puKi9la]. The program is required by all
the statistical techniques to design optimal codes for the
datastreamstobecomp~ 1tfvstgathersa.llthevita.l
stihtisbs about the specifg file and then estimates the best
run-length or statisti& technique for the fde. Finally, it
reports on the findings, and develops an optimal Shannon-
Fano and H&man codes automaticalIy. Notice that the
program is not required by nonstat&ical techniques such
aSthdZW.

5. OTHER IMPLEMENTATIONS

The ppular adaptive LZW algorithm has very simple
logic, leading to inexpensive and fast implementations.
Good LZW implementations use 9- to &bit codes,
handling most applications. A 12.bit code is suitable for
medium-s& fdes. Efficiency improves with larger codes.
A tight coding of the algorithm can compress 75 Kbytes

73

inasecondona1MXPSmachine. TheLZWtechniqtz
can be found in several file compression utilities for
archival storage.

For example, the MicroSoft MS DOS environment
has enjoyed archival programs such as ARC by System
Enhancement Associates of Wayne, NJ, as well as PKZIP
by PKWARE of Glendale, WI. The ARC program has
been portal to Unix, CPM and other operating system
environments. Machines with Unix can use the
COMPRESS and COMPACT utilities. The Berkeley
Unix has a COMPRESS command which is an
implementation of the Lz algorithm, with a table of up to
64 K entries of at least 24 bits each (total of over 1372
kbits or over 1% kbytes on most machines). The Apple
Macintosh environment has several good programs,
including PackIt IX/III and UnpIt by Harry Chelsey
[Ches84], as well as StuffIt and UnStuffIt by Ray Lau
[Lau87]. The StuffIt shareware is written in Lightspeed
C. An improved version of StuffIt is now distributed as a
commercial package [Stuf90]. The ARC 5.12 program
uses a simple RLE and LZW algorithms for compression.
The Pa&It program uses Huffman encoding only. In the
Stuffft, compression is done by the IZW and/or Huffman
algorithms, and when they fail, by the less efficient RLE
algorithm. Its LZW implementation is similar to the
ARC 5.12 LZW, but uses 14 bits with a hashing table of
size 18,013, rather than the 12/13 bits used in ARC. The
ARC LZW implementation, in turn, is similar to that of
the public domain COMPRESS utility in Unix. A recent
LZW implementation for packet radio by Anders Klemets
[Klem90] is designed to work in conjunction with the
IBM PC implementation of the TCP/IP protocols by Phil
Kam ofBellcore.

In addition, the LZW algorithm can be employed not
only on files requiring perfect transmission (e.g., financial
data), but also on imperfect data such as e-mail text of
non-critical nature, weather data, and digitized speech
transmitted using the store-and-forward mode. Files with
poor data structures (sparse encoding of data and empty
spaces) can ah benefit from LZW compression.

6. CONCLUSIONS

This paper presents a classification of the major data
compression m&&s and a number of useful compression
techniques that could be suitable for packet radio.
Although the top-down Shanm-Fano technique is better
than Huffman on alphabets with large variance, while the
bottom-up Huffman technique is better on uniform
alphabets, the latter may employ heuristics to make it
better on all a&habets. The arithmetic coding technique is

better than Huffman. The StoIw static and dynamic
sliding d.iCtiOnary tKhniqueS are implementations of the
Lzl and IX2 algorithms, with essential generalizations to
heuristic algorithms. The popular Lzw technique is also
an implementation of the LZ algorithm.

In addition to the lossless techniques, lossy
algorithms for compression of imperfect data such as
noncritical electronic mail text, images, speech and other
biological data, should also be - in packet radio.

ACKNOWLtEDGEMENTS

This work was supported in part by the University of
Manitoba, as well as theNaural Sciences and Engineering
Research Council (NSERC) of Canada.

REFERENCES

[Ches84] H. Chesley, “Pa&It.” (Address: 1850 Union
St. #360; San Francisco, CA 94123.)

DuKi9la] D. Dueck and W. Kinsner, “A program for
statistical analysis of files,” Technical Report,
DEL9108, Aug. 1991, 50 pp.

DuKi9lb] D. Dueck and ‘W. Kin-, “Experimental
study of Shannon-Fano, Huffman, Len@-Ziv-Welch
and other lossless algorithms,” Proc. 10th
Computer Networking Co&, (San Jose, CA; Sept.-
29-30, MU), this Protings, 1991.

fJU73] N. Fakr, “An adlaptive system for data
compression,” Proc. Seventh IEEE Asilomar Conf.
Circuits & Systems, pp. 593-597, Nov. 1973.

[Gal1781 R.G. Gallager, “Variations on a theme by
Huffman,” IEEE Trwnr. Information Theory, vol.
IT-24, pp. 668-674, June 1978.

meld871 G. Held, Data Compression: Techniques and
Applications, Hardware and Soflware Cmuidkrationr.
New York (NY): Wiley, 1987 (2nd ed.), 206 pp.
(QA76.9.D33H44 1987)

mufT52] D.A. Huffman, “‘A method for the construction
of minimum-r&undancy codes,” Proc. IRE, vol. 40,
pp. 10984101, Sept. 1952.

w&91] W. Kinsner and :R.H. GreenfEld, ‘The
Lzmpel-Ziv-Welch @ZW) data compression
algorithm for packet &io,” Proc. IEEE Co&
Cornpter, Power, and Conzmwu’cafiom System,
(Regina, SK; May. 29-30, 1991). 225-229 pp., 1991.

[Kins90] W. Kinsner, “Forward error correction for
imperfect data in packet radio,” Proc. 9th Computer
Networking Co& (Lm&m, ON; Sep~ 22,1990),
pp. 141.149, 1990.

74

-la] W. Kinsner, “Review of datacompression
methods, including Shannon-Fano, Huffinan,
arithmetic, sta#, Lbmpel-ziv-Welch, bractal, neural
mztwcxk, and wavekt algorithms,” Tech&d
Report, DEL9101, Jan. 1991,157 pp.

-lb] W. Kinsner, “Losskss and lossy data
compEssioniIb&iingbctalsandrbeuralnetw~,”
Proc. ht. CorJ. Compterp Electronb,
Communication, Control, (Calgay, AB; Apr. 8-10,
1991). 130-137 pp., 1991.

mem90] A. Klemets, ‘7 implementation for KA9Q
Internet Package NO&” Pa&t Radib Bulletin, 5
Oct. 1990.
(TlmameofthecodeisavailabIe6nrmsics.seunder
filenamewchiV~~~,andthc
NOS is available from thumper.belAconxom.
Acidress: Anders Kkmeu, SMORGV, Sikv 51, S-
13541, Tyreso, Sweden.)

bg84] G.G. Langdon, “An introduction to arithmetic
coding,” IBM J. Res. Dev., vol. 28, pp. 135-149,
March 1984.

-871 R. Lau, “StuffIt.” (Address: 100-04 70 Ave.;
Forest Hills, NY 1137505133.)

wi76] A. Lempel and J. Ziv, “On the complexity of
finite sequences,” IEEE Trans. Inform. Theory, vol.
IT-22, pp. 75-8 1, Jan. 1976.

bync85] TJ. Lynch, Data Compression: Techniques
and Applications. Belmont, CA: Lifetime Learning,
1985,345 pp. (ISBN o-534-03418-7)

mcPe85] D.R. McIntyre and M.A. Pechura, “Data
compression using static H&ban code-decode
tables,” J. ACM, vol. 28, pp. 612416, June 1985.

FJels89] M.R. Nelson, “LZW data compression,” Dr.
Dobb’s J., vol. 17, pp. 29-36, Oct. 1989.

-821 M. Pechuza, Tiiiiarchival techniques using
data compression,” Comm. ACM, vol. 25, pp.
605-6@4 Sept. 1982.

Beg&O] S.M.Regan, “IZWrevisited,” Dr. Dobb’s
J., VOL 18, pp. 126-127 and 167, Jun. 1990.

(Regh81] ELK. Reghati, “An overview of data
compression te&niques,* IEEE Gmputer, vol. 14,
pp. 71-75, Apr. 1981.

fRiLa79] J. Rkanen and G.G. Langdon, Jr.,
“Arithmetic coding,” IBM J. Res. Dev., vol. 23,
pp. 149.162, March 1979.

[Stor88] J.A. Storer, Dota Compression: Methodand
Tkory. New York (NY): Computer Science
Press/W.H. Freeman, 1988,413 pp.
(QA76.9.D33S76 1988)

[Stuf90] “StuffIt Deluxe,” MacUser Mcgazine, voL 28,
pp. 68-70, Dec. 1990. (Address: AladDin systems,
Deer Park Center, Suite 23A-171, Aptos, CA 95003;
Tel. 408-685-g 175)

[wek84] T.A. Welch, “A technique for high-
performance data compression,” lEEE Computer,
vol. 17, pp. 8-19, June 1984.

wiNC87] I.H. Witten, R.M. Neal, and J.G. Cleary,
“Arithmetic coding for data compression,” Conun.
ACM, vol. 30, pp. 520-540, June 1987.

[ziLe77] J. Ziv and A. Lempel, “A universal algorithm
for sequemial dau compression,” IEEE Trans.
rnformtibn Theory, vol. IT-23, pp. 337443, May
1977.

[ziLe78] J. Ziv and A. Lempel, “Compression of
individual stqmns via variable-rate coding,” IEEE
Trans. h#imdm Theory, vol. IT-24, pp. 53@536,
Sept. 1978.

75

