Proc. ARRL 10th Computer Netwotking Conference, 1991

LOSSLESS DATA COMPRESSION ALGORITHMS
FOR PACKET RADIO

W. Kinsner, VE4AWK

Department of Electrical and Computer Engineering
university of Manitoba
Winnipeg, Manitoba, Canada R3T-2N2
Fax: (204)275-0261
e-Mail: Kinsner@ccm.UManitoba.CA
E-mail: VEAWK@ VE4KV.MB.CAN.NA

Abstract

This paper isareview of important data compression
methods and techniques, showing their evolution from the
simplest data suppression to the modem adaptive
(universal) methods. Selected lossless techniques for
critically important data, requiring perfect compression and
reconstruction are presented. Lossy techniques for
imperfect data such as speech, images, biologicd signals,
and casua text are mentioned.

1. INTRODUCTION
1.1 Motivation

Transmission of data over telephone lines and packet
radio, using standard data and file transfer protocols, as
well as storage of data on magnetic media and in other
storage devices can both be improved by data compression
techniques. Such techniques reduce space, bandwidth, and
input/output load requirements in digital system. For
example, the statistical variable-length Huffman technique
[Huff52] compresses text by 20%. This technique requires
prior knowledge about the statistics of the file to be
compressed Even better results may be obtained with the
arithmetic coding technique, as implemented by Witten,
Neal and Cleary [WiNC87]. The run-length encoding used
in facsimile can compress a single 81/2x11 inch sheet s0
that its transmission can be done in 30 seconds on a
voice-grade line at 9600 bps. The popular adaptive
Lempel-Ziv-Welch (LZW) genera purpose technique
[Welc84] can compress data (text., numeric, mixed, and
bitmapped images) by 40 to 60%. This technique does
not require a priori knowledge of the file structure, data
types, or usage dtatistics, and can operate on files of any
length. The compression is noiseless and reversible in

that a decompressed file is the exact image of the source
file. This contrasts with data reduction and abstraction
techniques in which data are deleted from the source.
Nevertheless, such lossy data compression with fractals,
neural netwarks, and wavelets are important techniques for
research and practical applications, as they can achieve
impressive compression ratios as high as 10,000:1
[Kins91a].

There are many other techniques capable of
compressing and decompressing data efficiently [Stor881,
[Held87), [Lync85], [Regh81], [Kins91a). Which one is
suitable for a given data or file structure? How should we
measure the efficiency of the techniques? How easy is it
to implement them? These and other questions have to be
answered before using the best methods and techniques.
Therefore, the purpose of this paper is to provide a review
of the basic data compression methods and techniques, and
to show their evolution from the simplest data
suppression to the modem adaptive (universal) and lossy
methods.

1.2 Models of Data Compression

Data compression refers to the removal of redundancy
from a source by a proper mapping into codewords,
carrying all the necessary information about the source so
that & compression could be possible without loss of
information. The compresson and decompression
processes are illustrated in Fig. 1.

A stream of p input message symbols (source
characters) M is compressed into a smaller string of g
codewords A(M) according to a particular algorithm, and
passed through a medium (data storage or communication
links). At the receiver, the compressed data A(M) are

67

mapped back into the origina source M, without any
losses. The compression can be done in either hardware,
software, firmware, or any combination of them.
Software solutions may be applicable for dow data
streams (Mbit/s), while modern parallel pipelined hardware
solutions may provide speeds of hundreds of Mbit/s.

CODEWORDS
INPUT (COMPRESSED DATA OUTPUT
SYMBOLS SYMBOLS
DE-

]~ MPRE -
(Sweem of COMPRESSOR (Repica
onginal of osginel
source ?‘J data)
cheracters) MEDIUM

(Communication Links
Data

] ot 1]

- Codeword 1 -
Symbol 1 [] n 1 =]
Symbol 2 2

o Codeword q o
Symbol p [

Fig. 1. A modd of transparent data compression.

The compression and decompression processes may
have a number of attributes, as shown Fig. 2. A
compression is reversible if the source data can be
reconstructed from the compressed codewords. The
compression is noisaless when no information is added
into the decompressed data, thus making it the exact
replica of the source. It is also lossless if no information
is removed from the recovered data. For example, the
Huffman, LZW and WNC techniques are noiseless and
lossless. In contrast, nonreversible (or lossy) mapping
(data compaction or abstraction) removes redundancy using
approximate methods, and the exact reconstruction of the
source is not possible. For example, speech compressed
using the linear predictive coding (LPC) or adaptive
differential pulse code modulation (ADPCM) algorithms
cannot be reconstructed exactly.

Compression is called transparent when it is done
outside any interaction with a computer programmer.
Compression that is not transparent is aso called
inferactive. Compression may be either statistical (e.g.,
Huffman) or nonstatistical (e.g., LZW). In the statistical
techniques, symbol usage statistics or data types must be
provided in advance, based on either an average or local
analysis of the actual data. Since the statistics gathering
process requires a single pass and the compression
another, these techniques are aso called two-pass
techniques. In contrast, nonstatistical techniques employ

ad-hoc rules designed to compress data with some
success. The statistical techniques may produce codewords
that are either of fixed length (LZW) of variable length
(Huffman), with the former giving higher compression
ratio.

COMPRESSION ATTRIBUTES

I 1
REVERSIBLE NONREVERSIBLE
(NOISELESS}) (LOSSY)

-TRANSPARENT
INTERACTIVE
STATISTICAL
NONSTATISTICAL
VARIABLE-LENGTH
— FIXED-LENGTH
ADAPTIVE
NONADAPTIVE
STREAM
- BLOCK (INCREMENTAL)
EGENERATIVE

NON-REGENERATIVE

Fig. 2. Attributes of data compression methods.

The statistical and nonstatistical technigques may aso
be classified as either adaptive or nonadaptive. The
adaptive (or dynamic) compression does not require
advanced knowledge, and develops the necessary
trandlation tables (e.g., LZW) or the data statistics (e.g.,
dynamic Huffman and WNC) based exclusively on the
incoming source stream. They are also called one-puss
techniques. The nonadaptive (or static) techniques
generate codewords, without affecting the original
translation rules or data statistics. Depending on the
method of outputting the codewords, a compression
technique may be classified as stream or block. A stream
technique outputs a codeword as soon as it is available,
while the block technique must wait until the
compression of ablock is completed. For example, the
arithmetic coding is a block technique, with recent
improvements that include incremental operation
whereby the entire block is broken into smaller ones that
are output more often (e.g.,, WNC). Compression may
also be regenerative or nonregenerative. In the
non-regenerative techniques, the trandation table must be
transmitted to the receiver, or else decompression is not
possible. The regenerative methods do not require the
transmission of the trandation tables, because they are
capable of reconstructing the table from the codewords. If
the compression and decompression phases take the same
effort (time and real estate), then it is called symmetric.
Clearly, the methods that are reversible, noiseless,
lossless, transparent, adaptive, regenerative, and
symmetric seem to be the most desirable.

68

1.3 Redundancy and Entropy

The amount of data compression can be measured by
the compression ratio defined as

)

where k is the number of bits per symbol in the original
message, p is the number of source charactersin a
message, n is the number of bits in a codeword, and ¢ is
the number of codewords. Thus, pk is the number of
bits in the original data string, and gn is the number of
bits in the compressed string. For example, R¢ = 2:1

signifies compression by 50%.

Redundancy can also be expressed in terms of entropy
of a code alphabet, I', corresponding to a string (source)
alphabet, §, which in turn is taken from a symbol
alphabet Z. The code alphabet is also called dictionary,
D, which contains a set of strings, but may also include
X or even S. The string alphabet is first-order if the
probability of taking the next symbol does not depend on
the previous symbol in the generation process of the
string.

Entropy of a first-order source alphabet, S, taken
from a binary symbol aphabet £{0,1} (also representing
the number of levelsin the signa used to transmit the
message) can be derived in the following form

m

Ha= —Z pilog2pi

@

where p; is the probability of occurrence of each symbol

in S, m=IS! is the number of symbols in the source
alphabet, and the base b of the logarithm is equal to the
length of the symbol aphabet b=12 (2 in this example).

Redundancy R, in the source aphabet, §, is

measured as the difference between a unit of information
H | for the alphabet, S, and entropy H, as given by Eq.
2. Thus,if Hj is
H; = logom 3)
then
R, =logom - H, @)

which indicates that if the character probabilities p; are
equal, the entropy must be Hy = logom, and there is no

69

redundancy in the source alphabet, Ry = 0, implying that a
random source cannot be compressed.

The number of bits, 4;, required to encode a symbol
whose probability is p; can be estimated from

A; =[-logap;] ©)

where [x] is the ceiling function producing the closest
integer greater or equal to x. In practice, the codeword
length may not be exactly equal to this estimate. For the
actual code, we can calculate the entropy of the code
alphabet, I, corresponding to the source alphabet, S, by
taking the sum of products of the individual codeword
probabilities p; and the actual corresponding codeword

lengths, 4.,

He =, pikci ®

i=1

This difference between the code entropy and the source
entropy shows the quality of the actual code; if both are
equal, then the code is called perfect in tk information-
theoretic sense. For example, Huffman and Shannon-
Fano codes are close to perfect in that sense. Clearly, no
statistical code will be able to have entropy smaller than
thesource entropy.

1.4 Classification

Figure 3 shows the major lossless data compression
methods, such as the run-length, statistical and adaptive,
aswell as a class of |0ssy compression methods used to
reduce the bit rates of speech signals, images and
biologica signas. The programmed and hybrid methods
may be either bsdess or lossy or combinations of both,
and will not be discussed here in detail. This section
presents an overview of the major methods, and discusses
some techniques belonging to the simple run-length,

statistical and adaptive methods.
DATA COMPRESSION
PROGRAMMED METHODS HYBRID
METHOD METHODS
T] T
1 4 n - A h |
AUN-LENGTH STATISTICAL ADAPTIVE LOBSY
METHOD METHOD METHOD
L. UL . DATOMC L, 21,22 | SPEECH
‘:m | PATTERN | STORER | MAGE
- RUN-LENGTH wanonFavo - 2 - %0
o BYTE = . “HUFFMAN A | “WAVELETS
™ PACKING u L. ARITHMETICA | FRACTALS
L -cetaswcoome ™ NmIIIhEIIC L. “NEURAL NETS

~ Fig. 3. Compression methods.

2. COMPRESSION METHODS
2.1 The Programmed Method

The programmed method requires interaction with the
application programmer, who determines an efficient way
of removing application-specific redundancy from the
source, and programs it into the application. Such
software is not very portable, and the development cost
may be prohibitive. So, this nontransparent approach
will not be discussed here. Instead, we shall concentrate
on methods that have universal techniques and
carresponding al gorithmsthat can be madetransparent

Another form of a programmed data compression is
an object-oriented description of an image, and a
programmed description of attributes. For example,
Adobe's PostScript may reduce the facsimile image by
10: 1 and considerably reduce the description of fonts
transmitted for printing.

2.2 The Run-Length Method

As shown in Fig. 3, this method includes the
following techniques: null suppression with a pair, null
suppression with a bit map, arbitrary character
suppression with a triple, nibble (half-byte) packing, and
delta encoding. These techniques will be described briefly
next.

An early compression technique, the n u 1l
suppression with a pair, was designed to suppress blanks
(nulls) in the IBM 3780 bisync protocol, with 30-50%
throughput gain. A sequence of blanks is substituted by
an ordered pair of characters (S¢, Count) whereS; isa
specia suppression indicator, and is followed by the
number of blanks to be suppressed. For example, astring
ABCbbbbbbbX YZ is reduced to ABCS;7XYZ.

Another technique is the null suppression with a bit
nap. If the specific characters such as blanks are
distributed randomly within a string, the blank
suppression technique cannot be used. Instead, we can
subdivide the string into substrings whose length matches
the number of bits in each character (word), and the
position of the blanks in a substring can be marked with
individual bitsin the word, thus creating a bit map whose
compact representation can be placed within each
substring.

This general run-length technique may be modified for
facsimile which has many white (0) and black (1) pixels.
The pixels may be represented by individual bitsin aword
in a bit-mapped manner. Thus, four bytes can carry 32

pixels. If we encode a group of white pixels by a single
byte and black pixels by another byte, then the run-length
compression can be improved. For example, a four-byte
sequence containing the numbers150/10/220/5 represents
150 white pixels, followed by 10 black pixels, which are
followed by 220 white and 5 black pixels. This has the
potential of 32:1 compression ratio (total 1024 pixels
against 32 when each hit represents a single pixel only).

Another technique is the arbitrary character
suppression with a triple which is a direct extension of
the null suppression to an arbitrary character. Instead of
the ordered pair characters, we must now use three
characters: the special suppression indicator, followed by
the repeated character and the character count.

The nibble (half-byte) packing is a modification of
the run-length and bit-mapping procedures. Rather than
suppressing the repetitive characters, different characters
may have identical upper nibbles which could be
suppressed. For example, the upper nibble in ASCII
financial characters could be suppressed, and the lower
nibbles could be packed. The same would apply to the
EBCDIC representation.

Still another technique, the delta encoding, is an
important extension of nibble packing. This relative
encoding scheme applies to substrings that are similar,
thus the difference (delta) between the substrings would
contain only few non-zero bits or characters, and such
delta substrings could be compressed using the above
suppression techniques. Examples of such strings could
be found in telemetry and facsimile.

In telemetry data, if measurement data are dowly
varying within a period of time, their values do not
change significantly and only differences could be
transmitted, leading to smaller numberswhich could have
more compact representation. The delta encoding could
run until either the range of the small numbers is exceeded
or data integrity would require a periodical reset of the
absolute value.

In facsimile data, the straightforward run-length
encoding can be used to suppress the white or black
pixels. The delta technique further reduces the scan line
data. If a reference line has been transmitted without
compression, only the difference of the subsequent lines
may be required to reconstruct the source data.

2.3 The Statistical Method

This method includes the following techniques:

70

diatomic encoding, pattern substitution, and variable-
length encoding.

The diatomic encoding technique takestwo characters
and replaces them with a single character, thus having
fixed length and a possible 2:1 compression ratio. Since
the number of special characters is limited, not all the
pairs can be compressed. Instead, the most frequent pairs
are sdlected for compression. The pairs must first be
identified by afileanalysisprogram, and themost frequent
pairs ar selected as candidates for compression. Extensive
studies have been done on different data types to identify
such pairs for English, text, FORTRAN, COBOL and
BASIC [eg., Held87).

The pattern substitution technique is an extension of
the diatomic encoding in that it also assigns special short
codes to common multicharacter groups. This scheme
may benefit files containing computer languages (e.g.,
WRITE, READ, etc.) or natural languages (“and”, “the”,
etc.). The subgtitution can be done by single codes or
special pairs such as $n, otherwise never appearing in the
string. Compressions of 20% were reported.

Another technique is the variable-length encoding.
All the previoudly discussed techniques employ fixed-size
character codes and produce fixed-size codewords. A more
compact code can be achieved by assigning shorter
codewords to frequent characters and longer codewords to
less frequent characters or their groups. This approach
was used by Samuel Morse when he selected short sounds
for the frequent characters (E,T,A,N) and longer sounds for
the less frequent ones. There are three effective variable-
length techniques such as the ordinary and generalized step
codes, the Shannon-Fano, Huffman, and WNC arithmetic
coding, as described in Section 3.

2.4 The Adaptive (Universal) Method

Adaptive (or universal) techniques can be seen as
generalizations Of many of the previous techniques. The
key idea hereisthat mo statistical kmowledge is necessary
to convert the available input stream into codewords and
vice versa. Instead, an optimal conversion is possible,
using a form of learning about the structure of either the
source stream or the codeword stream. Thus, the
techniques are capable of producing good codewords, either
without prior knowledge about the data statistics, or even
better codewords with data statistics acquired by
observation during the compression phase. Examples of
such adaptive statistical nonregenerative techniques include
the Huffman and arithmetic code WNC. Examples of
adaptive nonstatistical regenerative techniques are due to
Lempel and Ziv (LZ1 [LeZi76), [ZiLe77] and LZ2

7

[ZiLe78)), Storer (heuristic dictionary algorithms)
[Stor88], and Lempel, Ziv and Welch (LZW) [Welc84],
[KiGr91]. Other adaptive methods are being developed,
including an algorithm for binary sources and binary code
aphabet, a memory efficient technique based on fused
trees, techniques requiring a small number of operations
per encoded symbol. Some of these techniques are
described by Kinsner [Kins91a], and the basic ideas behind
the LZW technique are presented in Section 3.

2.5 Lossy (Approximate) Methods

The previous methods and techniques are lossless and
noiseless in that nothing is lost during the data
compression and nothing is added during the
reconstruction processes, respectively. These properties
are essential in perfect data in which a loss of a single bit
may be catastrophic [Kins90]. On the other hand,
imperfect data such as speech, images, biologica signals,
and casual electronic mail text may tolerate minor changes
in the source and dtill be sufficient after their
reconstruction, according to a distortion measure. This
class of lossy techniques may produce extremely large
compression ratios (10,000: 1). There are three emerging
classes of compression techniques with enormous
potential based on fractals, neural networks, and wavelets.
We are working on all three techniques related to speech
and pictures[Kins91a], [Kins91b].

3. EXAMPLES OF ALGORITHMS
3.1 The Shannon-Fano Coding

The Shannon-Fano (S-F) code has efficiency
approaching the theoretical limit and is the shortest
average code of al statistical techniques. The code is dso
good because it has the self-separating property (or the
prefix property) because no codeword already defined can
become a prefix in any new codeword. This property in
the S-F code leads to the ability to decode it “on the fly”,
without waiting for a block of the code to be read first.
The main question is how to generate such an optimal,
information efficient and self-separating code? The answer
is in the application of an old principle of binary search
tree, BST (or halving, or binary chopping). How should
we halve the entire set of symbols to achieve the
optimum variable-length code? A viable approach is to
use the overall (joint) probability of symbols and assign
the first 0 (or 1 —the choice is arbitrary at this first step)
to the symbols above 0.5 and the first 1 (or 0) to those
with joint probability not greater than 0.5. This
subdivision continues on the halves, quarters and so on,
until all the symbols are reached, as shown in Fig. 4.

Fig. 4. Shannon-Fano top-down binary tree.
3.2 The Huffman Coding

The Huffman coding scheme [Huff52] belongs to the
same class as the Shannon-Fano technique in that both are
statigtical, variable-length, optimal-length, self-separating,
and use the binary decision principle to create the code.
The difference lies in the application of the BST; i.e., the
S-F code is created by top-down binary chopping, while
the Huffman code is formed by bottom-up binary fusing.
As dready described, the S-F code is created by
subdividing the symbol table set into two groups whose
joint probability is as close to 0.5 as possible. Then, the
halves are divided into quarters, and so on, until al the
individual symbols are covered. The method is termed
top-down because the process starts from the root of the
tree where the global probability is 1.0 and progresses to
the leaves.

In contrast, the Huffman code formation starts from
the leaf level and progresses to the root of the tree by
fusing the probabilities of the individual leaves and
branches, as shown in Fig. 5. Thus, this method
emphasizes the small differences between the leaves, while
the S-F technique operates on averages. Although the two
techniques appear to be the same on short codes, the
differences will be discussed later in the section.

PROBABILITTTY BOTTOM-UP
SYMBOL P BINARY TREE . cooe
E 0.5625 05525 | 0 E
1.0000
01875 — 51878 104375 10 T
. 1
0.1875 10 A
o 0.0625 :Jm‘_/ \111 o
1/

Fig. 5. Huffman bottom-up binary tree.

We have implemented both S-F and Huffman
compression techniques, using the C language on the 1BM
PC. The codeis described in [DuKi91al, and experimental
results are presented in [DuKi91b, this conference].

3.3 Dynamic and Higher-Order Huffman

The S-F is better than the Huffman code on alphabets
with spread probabilities (large variance), while the
Huffman is better on a phabets with an even distribution
of the probabilities (small variance). Although very
attractive from the efficiency point of view, both methods
have problems. The problems include the limited size of
the trandlation table (a 256-entry table for 8-bit symbols
is sufficient for single characters only), difficult decoding
process on binary trees, the a priori knowledge of the
aphabet statistics, leading to two passes over the data to
be compressed, and variahility in the statistics on large
files requiring an adaptive analysis of the data and
transmission of more than one trandation table.

There are many modifications of the basic static
Huffman and S-F algorithms to cope with those and other
problems [Welc84, Regh81, Held87, Stor88]. In the
original paper [Huff52], Huffman considered non-binary
symbol aphabets, IZI>2 in addition to the binary case.
Others considered code alphabet I" with unequal cost, as
well as source aphabet with inaccurate probabilities and
trie (to distinguish it from a tree, [Stor88]) construction.
Implementation issues are discussed in [Pech82] and
[McPe85]. Many other references are provided by Storer
[Stor88, Chapter 2] and {Kins91a].

The dynamic Huffman code was introduced by Faller
[Fall73] and Gallager [Gall78]. A naive dynamic Huffman
encoding and decoding would start with a source aphabet,
S, whose symbols have equal probability. The
probability distribution is then updated after a character
has been encoded or decoded. The trie (not tree)
construction algorithm must be deterministic for both the
encoder and decoder so that the key procedures such as
halving decisions and tie breaking are done identically.
Although optimal, this method is inefficient because the
trie must be reconstructed after each character in the
message stream. Improvements and generalization of the
dynamic algorithm, as well as an extension of the
balanced trie concept is the splay tree and an alternative to
this approach the transposition heuristic, are discussed in

[Kins91a].
3.4 Arithmetic Coding

Arithmetic coding belongs to the statistical method,
but is different from the Huffman class of coding
techniques in that it develops a single codeword from the
input symbol stream by interval scaling, using the fractal
similarity principle. (Notice that this fractal similarity
principle has never been pointed out in the arithmetic
coding literature before). In contrast, the Huffman

72

technique develops codewords by atabl elookup procedure,
with the table obtained from a bottom-up BST. Both
techniques use statistical models of data that can be either
obtained a priori (fued model) or adaptively (dynamic
mode!). While Huffman coding generates codewords in
response to individual symbols (stream technique),
arithmetic coding either waits for all the symbols 10 arrive
prior to sending the codeword (block technique) or outputs
partial codewords when the interval has been located up to
a predefined threshold (incremental technique). Arithmetic
coding, and particularly the implementation by Witten,
Neal and Cleary [WiNC87] is shown to be superior to
Huffman coding. A tutorid on arithmetic coding is
provided by Langdon [Lang84], [Kins91a], and a class of
such techniques is presented by Rissanen and Langdon
[RiLa79]. We are working on an implementation of the
arithmetic coding.

3.5 Lempel-Ziv-Welch (LZW) Coding

The well known static LZ1 [LeZi76]), [ZiLe77] and
dynamic LZ2 ([ZiLe78]) nonstatistical agorithms due to
Lempel and Ziv can be classified as adaptive (universal)
techniques. The key i&a here is that no statistical
knowledge is necessary to convert the input stream into
codewords and vice versa. Instead, an optimal conversion
is possible using a form of learning about the structure
of either the source stream or the codeword stream, thus
judtifying the name “adaptive’. This class of techniques
converts variable-length input strings to constant-length
output codewords, using a dictionary (also called a
conversion table). In the case of Huffman-type coding,
the input strings are of constant length, while the output
codewords are of variable length, and a fixed-length
dictionary is provided to both the encoder and decoder. In
the case of Lempe-Ziv-type coding, the dictionary is of
variable length, and the encoder creates its loca
dictionary, D, in step with the incoming strings.
Similarly, the decoder reconstructs D in step with the
incoming codewords, thus making the method

regencrative.

The learning in the algorithm depends on the
following four heuristics. (i) initialization heuristic, IH,
(ii) matching heuristic, MH, (iii) updating heuristic,
UH, and (iv) deletion heuristic, DH [Stor88], [Kins91a).
The dictionary D isfirst initialized to an initial string
set Do which includes at least the string alphabet § in
Storer’s dictionary approach, or is empty in the Lempel-
Ziv approach. The encoder dictionary D is constructed by
repeatedly matching the incoming character stream to the
entries in its D, until a new string s, is found (or until
any other significant event occurs). The compression

results from a substitution of s, with an index
representing the string (provided the length of the index is
smdler than Isp,| where kel Signifies the length of an
object (+)). Now, D is updated according to the
matching s, and the current contents of D. If the new

update exceeds the size of D, then some entries must be
deleted, using a deletion strategy. Since none of the four
major activities has asingle form, they are called
heuristics. It is seen that a large number of adaptive
techniques can be derived, depending on the choice of the
heuristics.

The LZ1 adaptive (universal) technique has received
extensgive atention in literature because it can be the
perfect algorithm in the information-theoretic sense and
may be the best agorithm for many applications. Serid
and parallel implementations of the scheme are discussed
in (Stor88]. The LZW algorithm is another
implementation of the LZ1 algorithm [Welc84]. Our
LZW code is based on Nelson's and Regan’s
implementations [Nels89], [Rega%0], and isincluded in
{DuKi91a]. This C language implementation runs on an
IBM PC, and is portable to machines supporting 16-bit
integers and 32-bit longs. It islimited to arrays smaller
than 64 Kbytes on the MS-DOS machines (12 to 14 hits
used). Experimental results obtained with our benchmarks
are presented in [DuKi91b, this conference].

4. STATISTICAL ANALYSIS OF
FILES PROGRAM

In addition to implementing the Shannon-Fano,
Huffman and LZW & gorithms, we have also developed a
dtatistical analysis of files (STAF) program for data
compression [DuKi91a]. The program is required by all
the statistical techniques to design optimal codes for the
data streams to be compressed. It first gathers all the vital
statistics about the specific file and then estimates the best
run-length or statistical technique for thefile. Finaly, it
reports on the findings, and devel ops an optimal Shannon-
Fano and Huffman codes automatically. Notice that the
program is not required by nonstatistical techniques such
as the LZW.

5. OTHER IMPLEMENTATIONS

The popular adaptive LZW agorithm has very smple
logic, leading t0 inexpensive and fast implementations.
Good LZW implementations use 9- to 16-bit codes,
handling most applications. A 12-bit code is suitable for
medium-size files. Efficiency improves with larger codes.
A tight coding of the algorithm can compress 75 Kbytes

73

in a second on a 1 MIPS machine. The LZW technique
can be found in several file compression utilities for
archival storage.

For example, the MicroSoft MS DOS environment
has enjoyed archiva programs such as ARC by System
Enhancement Associates of Wayne, NJ, as well as PKZIP
by PKWARE of Glendde, WI. The ARC program has
been ported to Unix, CP/M and other operating Ssystem
environments. Machines with Unix can use the
COMPRESS and COMPACT dtilities. The Berkeley
Unix has a COMPRESS command which is an
implementation of the LZ agorithm, with atable of up to
64 K entries of at least 24 bits each (tota of over1,572
kbits or over 1% kbytes on most machines). The Apple
Macintosh environment has severa good programs,
including PacklIt IX/I1l and Unplt by Harry Chelsey
[Ches84], as well as Stufflt and UnStufflt by Ray Lau
[Lau87]. The Stufflt shareware is written in Lightspeed
C. Animproved version of Stufflt is now distributed asa
commercid package [Stuf90]. The ARC 5.12 program
usesasimple RLE and LZW agorithmsfor compression.
The PacklIt program uses Huffman encoding only. In the
SwuffIt, compression is done by the LZW and/or Huffman
agorithms, and when they fail, by the less efficient RLE
algorithm. Its LZW implementation is similar to the
ARC 5.12 LZW, but uses 14 bits with a hashing table of
Size 18,013, rather than the 12/13 bits used in ARC. The
ARC LZW implementation, in turn, is similar to that of
the public domain COMPRESS utility in Unix. A recent
LZW implementation for packet radio by AndersKlemets
[Klem90] is designed to work in conjunction with the
IBM PC implementation of the TCP/IP protocols by Phil
Kam of Belicore.

In addition, the LZW agorithm can be employed not
only on files requiring perfect transmission (e.g., financia
data), but also on imperfect data such as e-mail text of
non-critical nature, weather data, and digitized speech
transmitted using the store-and-forward mode. Files with
poor data structures (sparse encoding of data and empty
spaces) can also benefit from LZW compression.

6. CONCLUSIONS

This paper presents a classification of the major data
compression methods and a number of useful compression
techniques that could be suitable for packet radio.
Although the top-down Shannon-Fano technique is better
than Huffman on alphabets with large variance, while the
bottom-up Huffman technique is better on uniform
alphabets, the latter may employ heuristics to make it
better on all alphabets. The arithmetic coding techniqueis

better than Huffman. The Storer static and dynamic
dliding dictionary techniques are implementations of the
1.Z1and L.Z2 agorithms, with essential generalizationsto
heuristic algorithms. The popular Lzw technique is also
animplementation of the LZ algorithm.

In addition to the lossless techniques, lossy
algorithms for compression of imperfect data such as
noncritical electronic mail text, images, speech and other
hiological data, should also be considered in packet radio.

ACKNOWLEDGEMENTS

This work was supported in part by the University of
Manitoba, as well as the Natural Sciences and Engineering
Research Council (NSERC) of Canada.

REFERENCES

[Ches84] H. Chedey, “Packlt.” (Address. 1850 Union
St. #360; San Francisco, CA 94123.)

[DuKi91a] D. Dueck and W. Kinsner, “A program for
statistical analysis of files,” Technical Report,
DEL91-8, Aug. 1991, 50 pp.

[DuKi91b] D. Dueck and W. Kinsner, “ Experimental
study of Shannon-Fano, Huffman, Lempel-Ziv-Welch
and other lossless algorithms,” Proc. 10th
Computer Networking Conf., (San Jose, CA; Sept.-
29-30, 1991), this Proceedings, 1991.

(Fall73] N. Faller, “An adaptive system for data
compression,” Proc. Seventh IEEE Asilomar Conf.
Circuits & Systems, pp. 593-597, Nov. 1973.

[Gall78] R.G. Gallager, “Variations on a theme by
Huffman,” IEEE Trans. Information Theory, val.
IT-24, pp. 668-674, June 1978.

[Held87] G. Hdld, Data Compression: Techniques and
Applications, Hardware and Software Considerations.
New York (NY): Wiley, 1987 (2nd ed.), 206 pp.
(QA76.9.D33H44 1987)

[Huff52] D.A. Huffman, “‘ A method for the construction
of minimum-redundancy codes,” Proc. IRE, vol. 40,
pp. 10984101, Sept. 1952.

[KiGr91] W. Kinsner and :R.H. Greenfield, “The
Lempel-Ziv-Welch (LZW) data compression
algorithm for packet radio,” Proc. IEEE Conf.
Computer, Power, and Communications System,
(Reging, SK; May. 29-30, 1991), 225-229 pp., 1991.

[Kins90] W. Kinsner, “Forward error correction for
imperfect data in packet radio,” Proc. 9th Computer
Networking Conf., (London, ON; Sept. 22, 1990),
pp. 141-149, 1990.

74

[Kins91a] W. Kinsner, “ Review of data compression
methods, including Shannon-Fano, Huffinan,
arithmetic, Storer, Lempel-Ziv-Welch, fractal, neural
network, and wavelet algorithms,” Technical
Report, DEL91-1, Jan. 1991,157 pp.

[Kins91b] W. Kinsner, “Lossless and lossy data
compression including fractals and neural networks,”
Proc. Int. Conf. Computer, Electronics,
Communication, Control, (Calgary, AB; Apr. 8-10,
1991).130-137 pp., 1991.

[Klem90] A. Klemets, “LZW implementation for KA9Q
Internet Package NOS,” Packet Radio Bulletin, 5
Oct. 1990.

(The source of the code is available from sics.se under
filename archive/packet/ka9q/nos/lzw .arc, and the
NOSisavail abl e from thumper.belicore.com.
Address: Anders Klemets, SMORGV, Skv 51, §-
13541, Tyreso, Sweden.)

[Lang84] G.G. Langdon, “ An introduction to arithmetic
coding,” IBM J. Res. Dev., vol. 28, pp. 135-149,
March 1984.

[Lau87] R. Lau, “StuffIt.” (Address. 100-04 70 Ave,;
Forest Hills, NY 1137505133.)

[LeZi76] A. Lempel and J. Ziv, “On the complexity of
finite sequences,” |EEE Trans. Inform. Theory, vol.
IT-22, pp. 75-8 1, Jan. 1976.

[Lync85] TJ. Lynch, Data Compression: Techniques
and Applications. Bemont, CA: Lifetime Learning,
1985,345 pp. (ISBN 0-534-03418-7)

[McPe85] D.R. Mclntyre and M.A. Pechura, “Data
compression using static Huffman code-decode
tables,” J. ACM, vol. 28, pp. 612416, June 1985.

[Nels89] M.R. Nelson, “LZW data compression,” Dr.
Dobb’s J., vol. 17, pp. 29-36, Oct. 1989.

[Pech82] M. Pechura, “File archival techniques using
data compression,” Conm ACM vol. 25, pp.
605-609, Sept. 1982.

[Rega90] S.M. Regan, “LZW revisited,” Dr. Dobb’s
J., vol. 18, pp. 126-127 and 167, Jun. 1990.

[Regh81] ELK. Reghbati, “An overview Of data
conpr essi on techniques,” | EEE Computer, vol.14,
pp. 71-75, Apr. 1981.

[RiLa79] J. Rissanen and G.G. Langdon, Jr.,
“Arithmetic coding,” IBM J. Res. Dev., vol. 23,
pp. 149-162, March 1979.

[Stor88] JA. Storer, Data Compression: Methodand
Theory. New York (NY): Computer Science
Press/W.H. Freeman, 1988,413 pp.
(QA76.9.D335761988)

[Stuf90] “Swufflt Deluxe,” MacUser Magazine, vol. 28,
pp. 68-70, Dec. 1990. (Address: AladDin systems,
Deer Park Center, Suite 23A-171, Aptos, CA 95003;
Tel. 408-685-9 175)

[Welc84] T.A. Welch, “A technique for high-
performance data compression,” JEEE Computer,
val. 17, pp. 8-19, June 1984.

[WiNC87] |.H. Witten, R.M. Neal, and J.G. Cleary,
“Arithmetic coding for data compression,” Comm.
ACM, vol. 30, pp. 520-540, June 1987.

[ZiLe77] J. Ziv and A. Lempd, “A universd agorithm
forsequential datacompression,” IEEE Trans.
Information Theory, vol. IT-23, pp. 337443, May
1977.

[ZiLe78) J. Ziv and A. Lempdl, “Compression of
individual sequences via variable-rate coding,” IEEE
Trans. Information Theory, vol. 1T-24, pp. 530-536,
Sept. 1978.

75

