
PACSAT Data Specification Standards

Harold E. Price, NK6K
Jeff Ward, GO/K8KA

ABSTRACT

This document provides a standard way of describing PACSAT data formats in specifica-
tions, and provides certain assumptions for implementors.

This document describes the standard format for
P,4CSAT data.

Background

This standard is based on the following assump-
tions:

1) The spacecraft are the critical resources in the
PACSAT/groundstation network. If a particular
data representation can conserve memory space
and CPU cycles in the spacecraft, all other items
being equal, the representation that favors the
spacecraft should take precedence.

2) The UoSAT and the AMSAT-KA PACSAT
hardware are based on an Intel 80186compatible
device. Therefore, all internal multi-byte numeric
data is stored with the least-significant byte in low-
order memory.

3) The UoSAT and the AMSAT-NA PACSAT
software is largely based on the Microsoft C pro-
gramming language.

4) The UoSAT and the AMSAT-NA PACSAT
software development systems are based on IBM
PCs or compatibles.

Discussion

The primary decision to be made in PACSAT data
formats is “big endian” (BE) vs. “little endian”

(LE). Most network standards are defined as BE,
meaning the Most Significant Byte (MSB) of
multi-byte data appears in low order address
space, and the Least Significant Byte (LSB) appear
in high order memory. The UoSAT and Microsat
spacecraft all use Intel 80186 or compatible CPUs.
which store data with the LSB first, and are LE.

Multi-byte data appears in many places in
PACSAT data? including the file headers and the
control structures of the broadcast and FILI)
protocols. If these protocols were BE, the
spacecraft software would need to swap byte
order in several places. Whether done as in-line
code or as function calls, these conversions use
both CPU cycles and code space. It is clear that a
native data representation will result in a more
efficient utilization of the spacecraft CPU, and that
the data format conversions, if any, should be
done on the ground. Experimentation was done
showing that avoiding byte swapping on the
spacecraft resulted in significant space savings.

This will not affect the actual high-level software
code, as prudent programmers who wish to write
transportable code that is applicable to BE and LE
hosts will use macro calls to swap the byte order
when moving data from an external source to local
variables. By using the somewhat less common
LE in the protocol specification, the macro will be
active on BE systems when it would normally be
active on LE systems. In any case, the macros
would still be present in the source file.

For example,

fnum = NETSWAP32(broadcast head.fnum):

207

would be the line of code to read in the file num-
ber from a broadcast protocol frame. This code
will be the same no matter which order the proto-
col required the 4-byte integer field to be in.

Taking these assumptions into account, the stan-
dard to be used when defining data exchange for-
mats between PACSAT and a ground station are
as defined below.

Intended Applicability

This document is primarily intended to apply to
shared file formats, such as the standard PACSAT
File Header; and to PACSAT specific protocols
such as the PACSAT Broadcast Protocol. It is not
meant to infer that existing protocols, such as IP,
are to have integers byte-swapped when trans-
mitted to a PACSAT.

PACSAT Data Structure Specification Stan-
dard

1) All structure definitions in PACSAT standards
documents should provide C structures wherever
possible to describe data formats.

2) All structures are assumed to be packed; do
not assume slack bytes are provided to align
words and doublewords.

3) All multi-byte numeric data is assumed to be
stored and transmitted with the Least Significant
Byte first.

4) Where it is necessary to number bits, the least
significant bit is zero.

5) The standard method for referring to bexadeci-
ma1 constants will be the C standard Oxhh.

6) The assumed length of an unsigned or int type
is 16 bits.

7) The “left” end of a string is stored and trans-
mitted first.

8) “ASCII” characters are the printable ASCII
characters 0x20-0x71.

9) Times are represented bv the LJNIX 4-byte un-
signed integer counting the number of seconds
since 0000 UTC 1 January, 1970.

