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Abstract
Many current protocols employ retransmission to

ensure error-free data transfers. This is necessary for
perfect data where a loss of a single bit is catastrophic.
For imperfect data, such as digitized  speech transmitted in
real time in which a loss of one bit in a 1000 may be
acceptable, retransmission is not possible and forward
error cc#rection  should be used for error control. This
paper presents a review of suitable codes for such error
control, as well as several code implementations including
a modified (8,4,4)  Hamming code, (15,7)  Bose-
ChaucihuryHocquenghem  (BCH) code, and a concatenated
code capable of correcting not only random errors but also
burst errors. The code has an outer (7,4,3)  Hamming
code, an inner self-orthogonal l/2 convolutio~I code, and
acodewordinterlacematrix.

1. INTRODUCTION
There is a need for reliability in every communication

system. A major problem in digital data communication
systems is the introduction of errors due to a noisy

channel. Unlike other parts of the system where
transmission errors can be minimized or eliminated by

careful design, the channel is not under control and
transmission errors inevitably occur under noisy

conditions. The existing error c0ntrol scheme in amateur
packet radio is retransmission whenever errors are

detected in the received packets or when packets are lost.
The detection is often based on either checksum words or

cyclic redundancy code (CRC) words. However,

retransmission is inefficient since it wastes both time and

energy. When the communication medium is very noisy,
retransmission may fail as every packet could contain
errors. Mormver,  retransmission is impractical for real-
time applications and unidi~&onal  communication. But
above all, we have been using retransmission even though
perfect data transmission is not required.  imperfect data

such as non-critical text, digitized voice, and video may be

acceptable with a small number or enors.  Throughput of
such systems could be increased considerably with a
moderate error control by correcting (reconstructing) the
bits in error at the receiving end, based on redundant bits
inserted into the packet by the sender. This reconstruction
scheme is called forward error correction (FEC),  as
opposed to the automatic repeat request (ARQ) or
backward error correction (BEC) by retransmission.
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Fig. 1. Channel and line coders.

Coding refers to the translation between the source
6its (user-provided message bits) and the transmitted data
symbols (coded symbols) [Blah87,  M&187].  System
performance can lx improved by (i) fine coding to control
the power spectrum of the transmitted signal and (ii)
channel coding to control errors wMe88].  The line
coding changes the statistics of the data symbols to
remove undesired correlations among the source bits so as
to make them mofe random or uniformly active (through
scrambling), while the channel coding introduces
controlled correlation between data symbols through
redundancy to detect and correct channel errors. Figure 1
shows a channel coder translating source bits into coded
bits to achieve error detection, correction , or even
prevention. The line coder further improves the
probability of correct transmission. The decoding process
may be hard (the inverse of the pr~~ss of Fig. 1, with
explicit decoding of all the symbols) or sofr  (direct
decoding of the inform&on  bits from the received signal,
without the detection of any intermediate symbols)
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Since this paper concentrates on the channel coding to
handle random and burst errors simultaneously through
simple block and convolutional codes, respectively,
several pertinent definitions are required.  Channel coding
is concerned with two general classes of codes: block and
convolutional. III the block code class, a sequence of
source bits is segmented into blocks of k bits and
translated into n code bits, with n>k ar~I p=(n-k)
redundant bits. The (n,k) code depends on the current
block of k source bits only (mc~ryless  coder). The
block code is said to have code rate r=&~

On the other hand, a convolutional coder inserts
redundant bits without segmenting the source stream into
blocks. Instead, it processes the source stteam either bit-
by-bit or small groups of bits at a time. The code depends
not only on the current input bits, but also on a finite
number of past source bits (coder with memory).
Convolutional ccxks produce results at least as good as the

best block codes due to the availability of practical soft
decoding techniques. Performance of an uncoded and coded
system is measured by coding gain which is the
difference in signal to noise ratio (SNR) required at the
detector to achieve a fixed probability of either bit or
symbol error.

By combining two or more simple codes, a good
low-rate conctllentrred  code can be constructed miLe85].
Here, the source stream is encoded with an (n&) outer
code and then further encoded as a squence of (NJ)
inner code blocks. The function of the outer code is to
decode random or burst errors that have slipped through
the inner decoder. The outer code may be made more
effective if error bursts following the inner decoder are
spread among consecutive outer code blocks by a process
called interleaving or interlacing myk88].  A simple
line coder in the form of an interlace matrix can be used to
assist in distributing such burst errors. Although the
con- code is less  powerful than a single-stage code
with the same code rate and block length, the decoder is
simpler due to the partitioning of the decoding stages.

2 BLOCK CODES
2.1 The Cross-Parity Code

One of the simplest error correcting codes is the
cross-parity code based on horizontal and vertical parity
checks, as shown in Fig. 2. Each word in the block has a

horizontal parity bit added (to make the total  number of 1s
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even). Vertical parity bits are computed from all the
successive words and added to the columns. The parity
bits c8n be generated by taking module-2  addition denoted
by $ (exclusive-OR gate). When a single error occurs in
the block during its transmission (e.g., bit b2 in the 3rd

word is flipped to 0), then the parity bits for that row and
column computed at the receiver site will be 1s rather than
OS, thus indicating the location of the bit in error which
can be correcU by flipping. Correction of a single error
is, therefore, possible without retransmission.
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words 0 0 1
c 1 0 1

1
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Fig. 2. Horizontal and vertical parity errOr  conection
scheme.

Notice that our numbering of bits in a word is from
left-to-right, which is consistent with the majority of
coding theory literature. This convention is related to
matrix notation used in the early description of codes.
This is contrast to the usual right-to-left number
convention showing the weights of each digit in a
number, as well as the modem liEraturz that is based on
polynomials, rather then matrices. The structure of the
code can be described by total number of source bits

k=hxv (1)
where h and v are the numbers of rows and columns in
the source block, respectively, the number of redundant
parity bits

p=h+v+l (2)
and the total number of bits

n t k+P
giving the code rate of

r=k/n



For the code shown in Fig. 2, k = 8x3 = 24, p = 8+3+1
= 12,n=24+12=36,andr=24/36=2/3.

The code is important not only f&n the educational
point of view, but also due to its good code rate, no limit
on the size of the source block, and the simultaneous
single-error correction (SEC) and double-error detection
@ED) capability, also calkd SEC-DED. Three errors
may also be detected. What properties make the ti
suitable for correction? ItisseenfronFig.2thatany
two code words differ by at least two bits. This is the
most important observation determining the ability of a
code to detect and correct a specific number of random
errors. In other words, if the distance between two w&s
is large enough, an error produces a unique word outside
the transmitted set of code words, and the original code
WtiCanbemti

The number of places where two words (also called
row mutrices or vectors, denoted by bold characters) u
and v differ is called the Hamming distance and is
computed by

d(u,v) = w(u@v) 0
where w(a) is the Hamming weight defined as the
number of nonzero elements in the resulting vector. For
example, if we take the 3rd and 4th code words, then d =
w([OlOl] $ [llOO])  = w([lOOl]) = 2. The minimum
distance, dmin 3 is the smallest distance between all the

code words, and determines the number of errors that can
bedeected,t(J,anclcoKec~$,accordingm

dmin -‘=td+‘c for t$td

For example, if dmin = 1, no detection or correction is

possible, as any error converts the code word into another
valid code word. For dmin = 2, a single error can be

detected but not COKE~~ (the h parity bit). With dmin =

3, either a single error can be detected and corrected,  or if
the probability of a double error is high, then such a
double error can IX detected but not corrected For dmin =

4, the SEC-DED scheme is possible. For dmin = 5, a

double error can be detected and corrected. It is now Seen
why we need the h and v parity bits together; since the
h bit leads to dhmin = 2, it can detect an error in a row

OIlI)‘, and the v bit (dvmin = 2) is needed to locate the

column where the bit in question is. Note that the cross-
parity code is an example of a class of codes called

product codes in which the total distance is dhdv and the

individual codes are not limited to the parity check only.

The block code of Fig. 2 has also another useful
linear property because the modulo-2 sum of code words
produces  another code word. For example, the 3rd and 4th
code words ralt in the 2nd code word ([OlOl] $ [1 NO])
= [IMU]).  This property makes encoding and decoding
easy by using linear (X-OR) operations rather than random
table lodr-up procedures.

7’be  encoding and decoding may be further simplified
because the axle is also systematic (all the parity bits are
separated from the source bits). Still another useful
property of the code is its cyclic form; i.e., when a code
word is rotated (shifti cyclically), the resulting word is
also a code word. For example, by rotating the 3rd code
word on place to the right, the 6th code word results

([OlOl] -+ [lOlO]).
The code word generation process can be expressed

conveniently using matrix notation. Notice that a row

code vector c is a concatenation of the row source vector b
and the parity bit p, which generalizes to

c=bG 0
where G is the generator matrix  given by

G = &$I (8)
and Ik is the identity matrix of dimension kxk and P is

the single column parity matrix. For the example of Fig.
2, the 2nd code word is generated by

rl 0 0  11

Loo 11J

2.2 Hamming Codes
2.2.1 Tk Nonsystematic (7,4,3) Hamming Code

In the 195Os,  Hamming introduced a class of linear,
cyclic, systematic and perfect correcting codes with
distance of 3 and 4. A peflect code is one in which every
bit in the code word may be corrected. The simple (7,3)
Hamming code has n = 7 total bits, including k = 3
source bits and p = 4 parity bits (heavy overhead). It can
be generated using LFSRs  and correction can be done
using majority logic. The (7,4) Hamming code improves
the code rate and allows operation on 4-bit  nibbles.
Correction of a single error is done using a parallel
syndrome vector generator which is the address of the bit
in error. The simple syndrome vector is obtained by a
proper coverage of the source bits by the parity bits, as
shown in Fig. 3.
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PI =cjei&e3c7

Fig. 3. Non-systematic (7,4)  Hamming code.

For illustrative purposes, the source bits are
interspersed with the parity bits so that the parity bits
could occupy positions represented by the power of 2 (i =

20=1* = 2’=2;  = 224;...). As shown by the arrows in
Fig. 3, the index i of each pi shows: (i) the group of bits

to be checked for parity and (ii) the separation between the
groups. This provides a binary coverage of the bits, with
the most significant bit affecting all the parity bits, and
the other bits affecting two parity bits (e.g., c5 affects p1

and p4. For example, if

b = ($%b3b4]  = [c3c5sc7]  = [OlOl]

then the parity bits are computed as
p1=c3$c5$c7=0$1$1=0

p2=c3$c@c7=0@0$1=1

p4=c5$c@c7=1$0$1=0

andthecodewordis

c = tPlP~3P4c5qjc71=  folOOlOl3 (12)
If we assume that c is transmitted as is (without any

line coding) and that an error occurs in position c5, then
the received code word is c* = [OlOOOOl].  The syndrome
vector, s, is calculated as

sl=p~$c363c5@c7=o$o@o@l=1

S2=P2$C3$c6$C7=l$O$O$l=O

s4 = p4 $ c5 $ c6 $ c7 =O$O$O$l=l (13)

It is seen that since s = [s4s2sl]  = [lOJ]  is the address of

the location with error, an ordinary parallel binary deco&r

cancorrecttheerror.
The (7,4) code concept can be extended to more bits

(n&)  with

p=n-k, n=2*-1,  k=n-p (14)
Forp=4,n=16-1=15andk=154=llwehavea

(15,ll)  code with 11 source bits and a much improved

code rate of r = 1 l/15.
The descriptive formulation of the (7.4) code can be

presented in a more formal manner by using the following
p x n pan@-check  H mutti

H =[hlh2h3hd’bhdd

pl p2 c3 p4 c5 c6 c7

Notice the binary& structure of the matrix from left to
right. This matrix can can be used to construct any other
distance-3 code. (For the distance to be at least 3, no two
columns in H should be the same, or any three columns
should add to 0.)

2.2.2 The Systematic (7,4,3) Hamming Code
The above analysis concentrated on a non-systematic

form of the linear code which require parallel circuits for
its generation and decoding. In practice, serial circuits
(LFSR) are preferred since the bits are transmitted serially.
To find an appropriate LFSR for the (7,4)  code, the code
must be cyclic and systematic. This can be achieved by
changing the H matrix to a k x n generator matrix
from which a generator polynomial could be derived.
First, the matrix H can be changed from a non-systematic
form to a systematic form by rearranging the columns for
the most convenient encoding of decoding (this change
preserves  the SEC capability due to the uniqueness of the
columns)

H = [bl b2 h3 h4 h5 h6 h71

H =[ PTIIp]
where P is the p x k coefficient matrix that defines how
the parity bits are related to the message bits, T denotes
transpose, and Ip is the p x p identity matrix. This
systematic form is also called reduced echelon form
peWe72]  and can be obtained formally by row reduction
into the canonical form fLeMe88].  It can be shown
fRaFu89,  Mti85,  LeMe88, Hayk88, ClCa81, Kuo81,
Rode82,  MiAh88] that the generator matrix is related to
the paritycheck matrix through

G = [ II, 1 P] (18)

144



where I is the k x k identity matrix. From Eq. 16, the
(7,4)  cOde  has the following generator matrix

andcanbeg-bytaking
c=bG
Note that the generator vector g4 in Eq. 19 is

important because it specifies Ihe generalor matrix G
completely. For example, the vector g3 is obtained by

shifting g4 one place to the left. Next, vector g2 is
obtained by shifting g3 to the left and adding (mod&-2)

g4 to it. Finally, g1 is obtained by shifting g2 left and
adding 84. Therefore, all the code words are generated by

cyclic shifts of 8;4.
The generator vector g4

g4=[000 1 0  111 (21)
is associated with a generator polynomial of the following
generaI  form

P-l
g(x) = x* + c giXi+ 1, gi=(O,l) (22)

i=l

code, p=3 and g(x) becomes
where p is the number of redundant bits. For the (7,4)

g(x) = x3 + x + 1 (2%
More formally, the generator polynomial is found be

factoring (~“-1)  into irreducible polynomials and selecting
a primitive one of &gfeep=(n-k).

We can now rewrite Eq. 19 in the polynomial form as

c(x) = b(x)gW (24)
and the code is obtained by multiplying the message word
with the generator polynomial using either parallel
circuits or serial LFSRs. The problem here is that the
multiplication almost always produces a non-systematic
code. However, the message bits are not alter& if they are
just shifted to the left by as many places as the degree of
the generator polynomial g(x). This is equivalent to the

multiplication of b(x) by x*. But to maintain c(x)
unchanged, the right-hand-side of Eq. 24 must be adjusted
by the remainder polynomial

= x*b(x)  + rem

where rem(a) denotes the remainder. The above

expression constitutes the encoding algorithm for LFSRs:

2.23 A (7,43)  Hamming Encoder
The most convenient circuit to compute the rem(e) is

a LFSR whose structure is represented by the selected
generator polynomial g(x). It is shown in Fig. 4.

the message word b(x) is shifted to the left by p bits, and

thep parity bits represented by the rem(e)  are appended to
the message word

I
Generator vector: g = Will

P
WmmiaJ  g ( X ) =  X3+X+ 1

P

saJr= I I
Code word,c

Pl PzP3h w3 b4

Fig. 4. Systematic (7,4)  Hamming encoder.

parity register, PR, whose contents are first set to 0 at
the beginning of each new merge word, and then shifted

The LFSR has p=3 stages (flip flops, FFs) in its

by a clock. The stages are separated by modulo-2 adders at
places determined by the g(x). The LFSR multiplies b(x)

by x* at its entry, and subtracts g(x) from its current
contents whenever the serial quotient (SQ) is 1. The SQ
is calculated horn

SQ(‘) = FF, @ b(k+ t=O, l,- . l k- 19 (26)
where t denotes clock period, FFp is the most-significant
bit (MSB)  of the FF, and b(kmt)  are the successive
message bits, starting hm the MSB.

Table 1. Remainder generation in a LFSR.

ZYLCE

CLEAF

shift 1

2

3
4
5
6

CNTL
~-

0
0
0
0

7
DATA

So- N

1 1
0 0
0 1
1 0
0 x
0 X

0 X

REGISTER

@l 0
lo

OUT
PUT

1

0
1

0
0
1
1
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Let us rewrite Eq. 9 in reverse sequence, consistent
with polynomial notation

b = [b&bZbl]  = [ lOlO] (27)
and trace the events in the encoder, using Fig. 4 and Table
1. Following a CLEAR, the feedback path is closed by
the application of CNTL=O,  the multiplexer h4UX
connects the source input, b, to the coder output, and the

SQisgeneratedasSQ(*)=FF+b~=O@  l=l. After

thef~tshift,FFl=1,FF2=~~dSQorO~1=1,

FF3=0fromFF2,andSQ(1)~FF3$b3=O$O=0.

This process continues for three more clock periods, and
the fti remainder p = [p3  p2 pl] = [Ol l] is appended to
the message word by turning the feedback path off,
switching the MUX to the PR, and applying p=3 extra
clock periods to produce the correct code word c =
[ 101oor  11.

The above operation can be confirmed using
polynomial manipulations. The message vector of Eq. 27
has the following corresponding  polynomial

b(x) = x3 + x (28)
andtheremainder

P(X) = rem
[$7::x;] (29)

is computed using Euclidean long division as follows.
x3 + 1

(30)
J6 + x4 + x3

Remainder
By changing the remainder into its matrix form p = [01 I]
and concatenating it with b, c is found as

c=blp=[lOlOOll] (31)
Similarly, by using Eq. 25, we f’lnd

c(x)=x3(x3+x)+(x+1)
=x6+x4+x+1

(32)

OQ c = [1010011] (3%

2.2.4 A (7,43) Hamming Decoder
Since syndrome generation can be considered as the

inverse of code word generation, it can use the same
LFSR multiplier/divider. The syndrome vector s is
computed according to Eq. 25

S(XPC*(X))  = X&*(X)  mod (g(x))

= rem
W)

If there is no error in c*(x), then s=O.  If an error e(x)
OccurS,  then the received signal is linear combination  of c
ande

c*(x) = c(x) + e(x) (36>
andthesyndromeisduetothetheerroronly
s(c*(x))  = s(c00) + Wx))

= w mod (g(x))  + w mod (g(x))
= 0 + e(x) mod (g(x))
= s(eoo)

(37)
am c m 3

- 4 - 8JX) = x + x + 1
SW’id  Qtiient,  =

synbom  ragkter,  SR

Fig. 5. Systematic (7,4) Hamming decoder.

Figure 5 shows how the received word c*(x) is fed to
the syndrome generator and a buffer register, BR, while
CNTL=O. After n=7 shifts, the syndrome is in the
syndrome qister  (SR) and a copy of c* is in BR. The
control signal now becomes -1 to break the path of
input c* into the LFSR and BR, as well as to open a new
feedback loop for the ~JTW correcting signal e. The enor
is corrected  after another n clock periods.

Table 2. Syndrome vectors for systematic (7,4) code.
T

e0X s(e(x>) s(x 3 e(x)>

1 1 x+1
X X x2+x
X2 X2 x2+x+1
X3 x+1 x2+1
X4 x2+x 1
X5 x2+x+1 X

X6 x2+1 X2

146



Table 2 shows a polynomial form of the errors and

syndromes. If the error is in the MSB (e(x)= x6), then

s(x3e(x))=x2  (or s=[loO]) and the correcting AND gate
generates e=I which corrects the error on the 7th clock

period. If the em is in the 4th position, (e(x)= x3), then

s(x 3e(x))=x 2 + 1 (or s=[lOl]) and the correction occurs on
the 10th clock period, as shown in Table 3.

Table 3. Correction of errors in systematic (7,4)  code.
Code sent is c=[ 101001 l] and received c*=[ 101101 l]

XC

=LEp

shift

2
3
4
5
6
7
8
9

10
11
12
l&

0
0
0
0
0
0
0
1
1
1
1
1
1
1

+
J!L

1
0
1

01
0
1
1

8

X

X

X

X

X

X

x
0
0
0
1
0
0
0

REGlSTER ti
PUT

X

X

X

X

X

X

X

The throughput of the decoder of Fig. 5 can be
doubled by using another decoder, running with a delay of
One&Word.

2.2 Otber Block Codes
The (7,4) Hamming code can be modified by adding

another overall parity bit to each code word. This (8,4)
code~u89]hascWance4andcanbeusedtocorrect
single random m cmd detect double errors (SEC-DED).
This code was used in our experiments.

Bose, Chaudhury and Hoquenghern (BCH) class of
codes is an extension to Hamming codes, and is described
in nearly all the xferences  mentioned in the previous
section [e.g., RaFu89J. They were designed to correct not
only multiple random errors but also burst errors. A
(157)  BCH code was used in our experiments.

There are many other block codes designed to correct

multiple random errors and burst errors, ,including the

ReedSalomon (RS) codes [MiIAS],  Goley codes, and

maximal-length codes. The BCH and RS codes are used
extensively due to their practical encoders and decoders
(e.g., the RS code is used in the audio compact disc).
However, since the Hamming codes a~ simple, they alone
or in combination with simple convolutional codes could
produce good results in packet radio.

3. CONVOLUTIONAL CODES
3.1 Systematic l/2 Convolutional Code

Convolutional codes (tree codes or trellis codes)
[ViOm79,  Kuo81,  MiLe85,  LeYMe88, ClCa81] are codes
with memory, Le.,  redundant bits are generated from not
only the current A bits, but also from a number of past
bits by modulo2 convolutions. The theory of such codes
relies heavily on the concepts discussed in the previous
section, but space limitation will restrict us to discussing

the principles only.

4 4 4
CLK CLEAR SCAN

r

SCAN

Fig. 6. Simple systematic l/2 convolutional encoder.

LRt us consider a systematic code of rate r = k/n =
l/Z (i.e., for each source symbol, bi, two code symbols
Ci+lCi are generated). One of the simplest convolutional

encoders is shown in Fig. 6 [h&L&5].  It consists of a
two-stage shift register (initially cleared). Following each
shift, the commutator (MUX) scans both inputs, thus
transferring two channel bits (In=2)  for each source bit
(k=l). For example, a source bit stream b = [lOlO...]
produces a code bit stream c = [ll 01 11 10 . ..I. Since
the source bits appear directly in the coded stream, the
code is called systematic. Since this code uses only one
past bit, its memory is m=l, and the total number of
bits, L, that can be affected by a message bit is defined as

L = (m+l) n (38)
and is called the code constraint length. In the above
example, L=4 (i.e., bl affect ~2). The scheme can be
extended to include more delay elements (nr>l), more
adders, and more source bits entering the encoder at a time.
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3.2 Self Ortbogonal Codes
A subclass of convolutional codes is the cononicul

self-orthogonal code (CSOC) [ClCaU]  in which
syndrome symbols can be taken directly as estimates of
the source stream, using majority logic. An optimal l/Z
csoc of constraint  length 1;2(6+1)x2  = 14 was designed
for digital radio at AT&T -53. The code is optimal
in the sense of the shartest  registers used. An encoder for
thecodeisshowninFig.7.

Fig. 7. Optimal systematic l/2 CSOC encoder.

A CSOC decoder is shown in Fig. 8. The received
bits stream is split into message bits b and parity bits p.
The b bits are shifted into a buffer register and into a
CSQC parity encoder for regeneration of the parity bits
p**; if the bit from the parity encoder, p**i, and the
currently received parity bit p*i are identical, no error has
occurred at that bit position. The syndrome bits are then
delayed through a syndrome register, SR, and five of them
are passed to the majority circuit which produces a 1
whenever at least three  inputs are 1; if b*i-6 is incorrect
and e=l, b*i-6  iS ~01ECted.  If b*i-6 is COHtXt  and not
more than two errors are allowed in the previous 13 b*
bits and 4 p* bits, then b*i6 will  not be corrected  falsely.

The bit error rate of the definite decoder (without
feedback), BERDD, for triple errors at a received BER =

1 Oo3  is BERDD - 3.5~ loo7 -51. If the e signal is
fed back into the SR, then a corresponding adjustment is
made to the other syndromes, leading to an improved
BERFD.  This encoder and decoder was used in the
experiments described next.

4. EXPERIMENTS

4.1 Block Codes
A systematic (8,4,4)  Hamming code encoder and

decoder was built to test the transmission of ASCII
charxters  and speech compressed using linear predictive
coding (Lpc-10)  [Swan871  over noisy channel [ChXu89].

The Hamming circuitry described in the previous section
was built using ‘ITL components, controlled by a 68000-
based laboratory system with software written in the
68000 assembly language. The important finding from
this work was that a paragraph  of English text transmitted
with FEC over a channel with double and mixed errors
was read by a group of testers without difficulties.
Experiments with LPC speech indicate that the above
scheme improves the quality of the bits transmitted (23 to
50 %), but is not sufficient due to the high sensitivity of
thespeechpmmemtmrrars.

Fig. 8. optimal  systematic l/2 CSOC decoder.

A (157) BCH encoder and decoder was also developed
to study their complexity bCh90].  The code can correct
double random errors and correct  burst errors of length 4.
A TTL implementation of the code was controlled by an
IBM PC through an interface and software written in
Microsoft Quick C and 8086 assembly language.

4.2 Tbe Concatenated/Interlaced Code
The concatenated code used in our latest experiment

KwNa90]  consisted of the (7,4) Hamming code, serving
as an outer code, and the l/Z CSOC convolutional code
sewing as an inner code - both described in the previous
section. By using an interlaw matrix capable of holding 8
code words, burst errors were distributed over a range of
bit positions so that the outer simple Hamming code
could handle them better. A controller based on the 6802
microprocessor was used to handle interfacing. The
encoder, decoder and interlacing circuits were realized in
TTL. Most of the software was written in the 6800

assembly language. Performance of the code was

measured using probabiIity  of character error (PCE) rather
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than the standard BER because it is more meaningful to
character transmission. A channel with additive white
Gaussian noise (AWGN)  was developed to test the system
with the definite and feedback CSOC decoders. The PCE
was mea~ufed  for SNR from 3.5 to 8.7 dB, with PCE

ranging between lC1 to 1w3. Again, reading  of English
text presented no problem.

5. CONCLUSIONS

A review of simple fofward  error correction schemes
suitable for moderate correction  ofrandom and burst errors
has been presented. Block codes alone can improve
transmission quality of noncritical text, while
convolutional or concatenated codes may be used for more
sensitive m bit streams, including compress& speech.
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