
RADIX 95 :
Binary to Text Data Conversion for Packet Radio

James G. Jones, WD5IVD
University of North Texas

Department of Computer Science

Gerald A. Knezek, KB5EWV
University of North Texas

Department of Computer Education and Cognitive Systems
Denton, Texas 76203

Abstract

Binary files can prove to be difficult to
transfer over the current amateur packet
radio network. Radix 95 provides a way
to convert data such as compiled
programs or graphic images to printable
ASCII characters and allow their transfer
in Converse Mode. Radix 95 (base 95) is
a simple variable length encoding
scheme which offers greater efficiency
than is available with conventional fixed-
length encoding procedures.

Introduction

Transfer of data across the amateur
packet radio network usually takes the
form of point-to-point computer
connections or store-and-forward BBS%.
In the case of point-to-point data
transfer, the TNC (Terminal Node Controller)
can be configured in ways to allow the
transfer of 8-bit data (converse mode
[8BlTCONV ON, AWLEN 8, XFLOW OFF] or simply
use transparent mode). However, the
transfer of 8-bit data through the current
store-and-forward BBS (Bulletin Board
Sysetm) network is unreliable due to the
use of certain 8-bit characters for control.
In this case, a message that assumes
the eighth bit is available for data can
cause the tran,sfer to fail.

With the use of available compression
programs, 8-bit to 7-bit conversion
techniques, and file splitting, it should be
possible to transfer 8-bit data across the
amateur packet radio network with
minimal negative impact upon total
network operations.

This paper will focus on Radix 95, a
base 95 8-bit to 7-bit file conversion
method which offers greater efficiency
than is available with conventional fixed-
length encoding procedures, and its
possible use for sending &bit data
across the network.

8-bit to 7-bit Conversiion

Three common steps are involved in
converting 8-bit to 7-bit data and
transferring it from one point to another ::

1. Translate a sequence of bits into
printable ASCII code.

2. Transmit the data
3. Convert the ASCII code back to

original form.

The problems facing the transmission
of 8-bit data are :

1. How to transmit streams of eight or
more binary digits through a network that
might have problems handling the data.

107

RADIX 95 - Binary to Text Data Conversion for Packet Radio

2. How to pass certain -/-bit sequences
through without having the sequence
interpreted as a control character.
These characters include flow control
(DO, DC3), padding (NULL, DEL), transfer
of control (ESC), or any of the other non-
printable -/-bit characters. Any sequence
of data bits which could represent a
control character should not be sent
unless some special provision is made to
mask it as a printable ASCII character.
[Stone 1984; Brown 1984; Da Cruz 1984-l]

3. How to avoid significant amounts of
transmission overhead. -

Most data conversion methods achieve
1 and 2, but introduce significant
amounts of transmission overhead.
Radix 95 produces less overhead than
most conversion methods now
commonly used.

Overhead

Overhead is the measure of how many
extra bits must be utilized to convey
meaningful information. Encoding
overhead is defined as :

be- sb
0 e I

bS

oe = encoding overhead.
bs= number of bits of meaningful data

in the source representation.
be = number of bits occupied by the

meaningful data after encoding.

Current Conversion Methods

Hex Encoding
Hex encoding views each binary octet

as two contiguous 4-bit sequences.
Thus each group of four bits is translated
into its corresponding hexadecimal
character.

The mathematical transformation is
from Binary (base 2) to Hexadecimal (base
16) .After transmission, the 4-bit
sequences are recombined into the
original data. Table 1 shows the Hex
Encoding scheme.

The encoding overhead for Hex
Encoding is 75% [(l&8)/8 = 618 bits 1. With
the addition of the accompanying parity
bit, most implementations actually use
160bits to transmit eight bits of
information. The total data encoding
plus parity-bit overhead is 100%.

BINHEX for the macintosh is a
common program which implements Hex
Encoding.

TABLE 1 :
Binary Encoding with Hexadecimal

tern .en-
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

Character Prefixing
Character Prefixing checks every

sequence of eight bits and sends it
unaltered if the bit stream corresponds to
a printable ASCII character. If the eighth
bit is a 1, then a special prefix character
(typicaIIy &) i s sent preceding the
character corresponding to the remaining
seven bits. If the remaining seven bits
represent an ASCII control character,

RADIX 95 - Binarv to Text Data Conversion for Packet Radio
I

then the character is transformed to one
which is printable (by complimenting the
seventh bit) and the transformed character
is also preceded by a second special
prefix character (typically +I). The special
prefix characters are themselves
prefixed for transmission. Table 2 shows
the encoding scheme.

TABLE2 :
Binary Encoding with Character Prefixing

Bit Pattern Numeric Transformation Transmission
Eauivalent

0 0 0 0 0 0 0 0 0
00000001 1

. .

oooillll
00100000 32 0100000
00100001 33 0100001
00100010 34 0100010
00100011 35 1100011
00100100 36 0100100
00100101 37 0100101
00100110 38 1100110
00100111 39 0100111

.
31

011i1110 li6
01111111 127
10000000 128
10000001 129

. .

111~1111 255 011;111

1000000
1000001

lolilll

lllil~o
0111111
1000000
1000001

#@
A
.
.
#

SPAdE
1.

e;:
$
0/0

& f
I

.

.

#i
a#@
& # A

.

Si?

The overhead for character prefixing is
dependent on the type of file being
transmitted. Text files are efficient, since
few characters need to be prefixed. For
a binary file consisting of randomly
distributed l’s and O’s, the overhead is
83.5%. [Abel 19861 Kermit is a popular
program using Character Prefixing for
binary file transfer. [Da Cruz 1984-21

RADIX 64
Radix 64 partitions three consecutive

bytes (24-bits) into four 6-bit units. Each
6-bit sequence (with 32 is added to avoid

control characters) is converted to its
corresponding ASCII character. The
mathematical transformation is from
binary (base 2) to base 64. Table 3 shows
the encoding scheme.

The overhead of Radix 64 is 16.7% [(7-
6)~ bits 1, because a 7-bit ASCII character
is used to carry six meaningful bits.
When parity is added, thee total overhead
is 33.3% [(8-6)/6 bits 1.

Uuencode [UCB 19801, found on most
UNIX systems, uses the Radix 64
encoding scheme.

TABLE3 :
Binary Encoding with Radix 64

Bit Pattern Numeric Eauivaletg Remesentation
000000 0 SPACE
000001 1 !
000010 2 @a

. . .

11;101
. .

61 1
111110 62 A
111111 63

RADIX 95

Radix 95 uses all printable ASCII
characters to carry meaningful code.
The 31 printable characters in excess of
Radix 64 requirements are used to
represent designated 7-bit sequences.
In addition, since there are exactly two 7-
bit combinations such that the first six
bits are the same, there are no first six
bits of the extra 31 char!acters. Each 6-
bit segment becomes a 7-bit combination
when a 0 or 1 is appended to it. 62 (2~31)
characters can actually be used to
represent 7-bit segments. Table 5 shows
the encoding scheme used for Radix 95.
The theoretical overhead for Radix 95 is
shown in Table 4.

RADIX 95 - Binary to Text Data Conversion for Packet Radio

Table 4 : Theoretical Overhead of Radix 95 [Renka xxv]

Let N6 = Number of 6-bit strings in a random binary data file. (Values of range 31-63)
Let N7 = Number of 7-bit strings in a random binary data file.

(These have lower 6-bit values in the range O-30 and either 0 or 1 as the 7th bit)
then : bs = 6(N6) + 7(N7)

be = 7(N6 + N7)
Q = be - bs

bs

therefore : TN6 + N71 r6 (N6) + 7 fN7U
6 (N6)-+ 7 (N7)

= N6 = 1
6 (N6) + 7 (N7) 6 + 7(N7/N6)

Let p = Probability that a random 6-bit string has a value in the range O-30 p = 31164
Letq= l - p q = 33164

For a theoretical random binary file :
N7lN6 = p/q = [(31164) / (33164)] = 31133

By Substituting :
Oe = 1 = 1 = 7.95%

6+7(N7/N6) 6 + 7 (31133)

If begun with be = 8 (N6 + N7), to allow for parity, then a similar computation yields 23.23 %
overhead.

TABLE5 :
Binary Encoding with Radix 95

Bit Pattern Numeric Eauivalent Representation
0000000 0 SPACE
0000001 1 1.

. .

ooiiiio 30 l

.
>

011111 31 ?
100000 32 @
100001 33 A

. .

iiiiii 63 .
1000000 64

1000001 65
1000010 66

.

ioiiioi
. .

93 1
1011110 94 m

RADIX 95 EncodincrlDecodinq [Abel 19al

Common practice is to view a file as a
collection of bytes of characters. By
taking the input file as a continuous
string of bits, it is possible to break the
file into segments of fixed or variable
lengths. As long as the segments are
kept in proper order during encoding and
decoding, the transfer takes place
correctly .

First take all 64 6-bit combinations as
6-bit binary numbers, such that all
combinations are enumerated by their
binary value (000000 = 0, OOOOOI = I, etc.).
To make use of the remaining 31
printable character possibilities, the first
31 of the 6-bit numbers are replaced by
7-bit numbers (62 total) created by
including a 0 or 1 as the seventh bit.

110

RADIX 95 - Binary to Text Data Conversion for Packet Radio

To encode, six bits are collected from
the input file and are assigned place
values in ascending order (1,2,4,8) to
make a number. If the number is O-30
inclusive, then the next contiguous bit (O
or 1, with a place value of 2A7) is added to the
number. The number is then added to
32 to give the ASCII value of a printable
character, which is then written to the
output file.

Since it is not possible to determine
beforehand the number of bits that will
be encoded, there will be between zero
and five bits remaining at the end of the
file when end-of-file is read. This last
(short) bit sequence will be written as a
full ASCII character, so a special
provision must be made to prevent the
decoding program from appending extra
O’s to the output file.

One extra character is written after the
last transmission, representing data from
the file. This last character specifies how
many bits are to be extracted from the
preceding character. Example : if the
four bits 0110 (value 6) remain at the end
of a file, then the character & (6+32) is
written to carry the data, followed by the
character $ (a+~) to indicate that only
four of the seven bits carried by & are to
be extracted upon decoding.

To decode, characters are read from
the encoded file one at a time, and
converted to a number by subtracting 32
from each. If the number is O-30 or 64-
94, then the seven bits of the number
from the least to most significant are
written. 32 is subtracted from the last
character decoded, and the number
which results is used to determine how
many bits (least to most significant) are to be
extracted from the next-to-last character.

Benchmarks

The following are benchmarks for
Radix 95 vs Radix 6~

BENCHMARKS for Rad
TEST FILE Oriainal Size
objcode 22924
objcode 45848
objcode 91696
source 41796
source 56040
random 40000
random 80000

[Yu 1987-j

x !95 (including parity”)
Ftesult Size Overhead
26830 17.04%
53658 17.03%
107314 17.03%
50798 21.54%
68162 21.63%
49340 23.35%
98712 23.39%

BENCHMARKS Radix for 64 (including parity”)
TEST FILE Oriainal Size Result Size Overhead
objcode 22924 30565 33.33%
objcode 45848 61130 33.33%
objcode 91696 122261 33.33%
source 41796 55727 33.33%
source 56040 74719 33.33%
random 40000 53333 33.33%
random 200000 2!66666 33.33%

objcode - Object Code generated by C compiler.
source - C source Code.
random - random binary digits.
t - Forced by Disk Storage Method.

Radix 95 encoding for random binary
data produced the greatest overhead of
the three types of test data included for
this scheme. Also as the two tables
show, Radix 95 produced less overhead
than did Radix 64 in all three test groups.

*DISCUSS ion

Radix 95 offers greater efficiency than
does other commonly available
conversion met hods However,
encoding overhead is just one of the
factors that determines the overall
efficiency. Processing time for the
conversion must ble kept in mind. At
some point the cost in file size overhead
will be offset by the amount of
computation time required. It has been
suggested that Radix 95”2 = 9025 paired

111

RADIX 95 - Binary to Text Data Conversion for Packet Radio

printable characters or 95*3 = 857,375
triplets (even more time consuming) be
investigated for further reduction in
transmission overhead.

mended File Formats

RADIX 95
The following is a proposed standard

format for Radix 95 files after encoding :

1 .

2 .

3 .

4 .

Top line of a Radix 95 file will read :
(RADIX 95 - [FILENAME : DATE])
Filename is the first 8 characters of file name
Date is - OO/OO/OO [Month/Date/Year]

Each line of Radix produced will be
70 characters long. No other
information should appear after the
last character on the line.

The file ends with :
(RADIX 95 - END FILENAME).
Filename is the first 8 characters of file name

A Radix 95 conversion program
should be designed to search a file’s first
10 lines (one that is t.o be converted back to 8-
bit data) for the “(RADIX 95” before
attempting a file conversion. If the
program cannot find the correct line
within the first IO lines, then the program
should abort.

File Splitting
The following is a proposed standard

form for splitting Radix 95 files.

1. The first line of each split file will be :
(FlLENAME.# of #)
‘Filename’ is the first 8 characters of
the actual file name to be split.
‘.#’ is the part of the whole file.
‘of #’ is how many different sections.

2. The file ends with :
(END - FlLENAME.# of #)

This will allow the user to specify the
first file of a number for the file splitter

program to read. Then the file splitter
will attempt to use the FILENAME.#
convention to reconstruct the file for the
user.

User Protocols

In this example, iet’s suppose
KB5EWV wishes to send a data file to
WD5IVD.

1. Start with a 65K binary file.

2. Compress the 65K binary file = 39K
(Assuming 40% compression)

3. Encode the 39K file = 46.8K
(Assuming a 20% Overhead with Radix 95)
At this point you have saved 18.2K and you
have a completely ASCII file.

4. Determine if the file needs to be split.
a. HF SKIP-NET forwarding - break into 5K

qr smaller segments. That would leave
10 files to be transmitted over a period of
days. Remember that the major flow of
SKIPNET is 300 baud on HF. This
accounts for the small size of messages.
VHF forwarding - break into 30K or
smaller segments. Local users will want
to consult with their local BBS system
operator to determine better message
sizes. High-speed networks would be
able to handle larger messages than
lower speed network connections.
Point-to-Point - No need to split a file you
intend to send all at one time.

5. Send File(S).
Type : Private to KB5EWV @ BBS
Title of : RDX - FILENAME.# of # TYPE

Type is the data compression
program used.

Examples : SIT - Mac Stuff-It
ARC - IBM ARC
PIT - Mac Packet-It

6. Recipient receives file(S).

7. Recipient joins file(S).

8. Recipient Decodes (Radix 95) file.

9. Recipient removes compression.

112

RADIX 95 - Binary to Text Data Conversion for Packet Radio

The usage of Radix 95, data
compression, and file splitting would
allow amateurs greater flexibility in
sending information involving 8-bit data
across the amateur packet radio
network. Radix 95 would allow an
amateur to load data files onto existing
BBS’s for local reading or for message
forwarding while reducing the amount of
traffic over the network compared to if
the same files were sent in their original
state. Currently there is no agreement
on the transfer of 8-bit data. Radix 95
would be an optimal choice in 8-bit to 7-
bit conversion for data transfers that
require the data be in 7-bit format.

BiblioaraDhv

Abel 1986 Abel, J. Alex and Gerald Knezek.
BinarjJ to Text File Conversion Using RADIX
Department of Computer Science, North95,
Texas State University, 1986.

Brown 1984 Brown, Eric and Art Wilcox.
Communications Features Explained. PC
World, September 1984, pp. 170-l 77.

Da Cruz 1984-1 Da Cruz,, Frank and Bill
Catchings. Kermit: A File-Transfer Protocol for
Universities. Part 1 : Design Considerations
and Specifications. By& June 1984, pp. 225,
278.

Da Cruz 1984-2 Da Cruz, Frank and Bill
Catchings. Kermit : A File-Transfer Protocol for
Universities. Part 2: States and Transitions,
Heuristic Rules, and E,xample. J3ytel July
1984, pp. 143-l 45,400-403.

Renka 1987 Renka, Robert. Theoretical
Overhead for Radix 95 Encodina. Excerpt
from : Binary Encoding Benichmarks Radix 64
vs Radix 95 [Yul987]. -11 th Annual Computer
Science Conference, Federation of North
Texas Area Universities. Department of
Computer Science, North Texas State
University, 1987.

Stone 1984 Stone, M. David. Picking the
Proper Protocol. PC Maaazine, vol. 7, no. 4,
June 11, 1985, pp. 355360.

UCB 1980 UNIXTM Prow#mmer’s Manua
7th -Erd, Virtual VAX-l 1 version, November
1980, Computer Science Division, Department
of Electricat Engineering anId Computer
Science. Berkeley, California: University of
California, 1980.

Yu 1987 Yu, Carol, Gerald Knezek, and Je
Carruth. Binary Encodina Benchmarks:
Radix 64 vs Radix 95, North Texas tState
University Department of Computer Science,
1987.

113

RADIX 95 - Binary to Text Data Conversion for Packet Radio

RADIX 95 Source
I* RADIX 95 ENCODE Jeff Carruth & Greg Jones 1988 l /
#include cstdio. h>

main0
{

unsigned long buffer = 0;
int temp;
short bits = 0;

while ((temp = getchar != EOF) {
buffer = (buffer CC 8) 1 temp;
bits t= 8;
while (bits >= 7) {

if ((temp = buffer >> (bits - 6)) > 30) {
putchar(temp + 32);
bits = 6;

1
else (

temp I= ((buffer >> (bits - 7)) & 1) CC 6;
putchar(temp + 32);
bits -= 7;

1
buffer &= -(-OL << bits);

1
1
putchar(buffer t 32);
putchar(bits + 32);

I

/* RADIX 95 DECODE Jeff Carruth & Greg Jones 1988 l /
#include <stdio.h>
#define getbyte(a,b,c) (a = b, b = c - 32, c = getchar

main0
{

char current, next;
int i, next2;
unsigned long bit buf = 0;
short in-buf- 0, in-current;

if ((getbyte(current, next, next2)) == EOF) {
fprintf(stderr,

“decode: not enough bytes in inputAn”);
ret urn(-I);

1
if ((getbyte(current, next, next2)) == EOF) {

fprintf(stderr,
“decode: not enough bytes in input.\n”);

return(4);

while (getbyte(current, next, next2) != EOF) {
in-current = ((current > 30) && (current c 64)) ? 6 : 7;

bit-buf = (bit-buf CC 6) 1 (current & -(-OL <c 6));
in-buf += 6;

if (in-current == 7) {
bit buf = (bit-buf <e 1) 1 (current >> 6);
tt?n-buf;

1

114

