
0.

Introducing System Description Language
for

AX.25 and Related Protoco

Eric L. Scace K3NA
10701 Five Forks Road
Frederick MD 21701

USA

Summary

This paper is part of a series of papers which provide extended finite state machine re:presentations for AX.25 and
related protocols. The state machines are depicted using state description language (SDL) graphic conventions from the
2.100 series of Recommendations developed by the International Telegraph and Telephone Consultative Committee (CCITT’)
of the International Telecommunications Union (ITU). An extended finite state machine representation of a communications
protocol such as AX.25 avoids the ambiguities associated with prose descriptions. These Idescriptions also compel the
protocol designer to confront many of the error scenarios which arise on a communications path, and simplify the
implementor’s task of producing correct solutions which will interwork with solutions created by others.

This particular paper introduces the SDL symbols and explains other general aspects of SDL diagrams. It also lays out
an organization of extended ftite state machines which, together, perform the AX.25 link layer protocol, handle multiple
simultaneous links, interact with the radio transmitter and receiver, and accomodate large data units sent by the application.

1. Status of Proposal

The ARRL Digital Committee proposes to completely replace the existing AX.25 Revision 2.0 state tables with the
following SDL representations. The scope of the SDL embraces not only the AX.25 data link procedure used between two
stations (and the intervening digipeaters), but also includes descriptions of related protocol functions:

segmentation and reassembly of large data units which exceed the Nl limit of a data link.
multiple simultaneous links on a single physical channel.
contention resolution for shared physical channels.
manipulation of the physical transmitter and receiver.

The following material is still in a draft state. You are invited to review and comment on this material. Comments are
desired so that the final publication is as useful as possible to its readers.

2. Principles of Extended Finite State Machines

An extended finite state machine models the operation of one party on a communications channel. The condition of
the machine is described by its state, a resting condition where the machine awaits input sign& from either the application
or from remote parties on the communications channel.

Whenever an input signal arises, the machine is triggered to execute a series of operations. These operations may
include calculations, the generation of signals to the remote parties on the communications channel, and the generation of
signals to the application. The sequence of operations concludes with the machine reaching again a resting state (the same
state or a different one).

The entire sequence of operations performed by the machine is atomic. For modelling purposes, the sequence is
considered to occur instantaneously, and can not be interrupted by any further event. The processing of such further events
does not begin until the machine has completed the sequence of operations and has reached a resting state.

Signals may be sent between machines within the same equipment, or via the communications channel(s) to machines
in other equipments. These signals are often called “primitives”.

3. Extended Finite State Machine Model for AX.25

The fast figure illustrates the organization of extended ftite state machines within a single equipment to implement
AX.25 Revision 2.1. In accordance with industry conventions (as embodied in, for instance, the Open Systems
Interconnection Reference Model), the machines which are closer to the application are shown as “higher layer” machines,
whilst those machines closer to the physical channel are shown as “lower layer”.

The collection of machines in the figure
Systems Interconnection Reference Model.

embraces both the data link layer and the physical layer of the standard

3.1 Segmentor

The segmentor state machine accepts input from the higher layer AX.25 user. If the unit of data to be sent exceeds the
limits of an AX.25 I or UI frame, the segmentor breaks the unit down into smaller segments for transmission. Incoming
segments are reassembled for delivery to the higher layer AX.25 user. The segmentor passes all other signals unchanged.

One segmentor exists per data link. Since a single piece of equipment may have multiple data links in operation
simultaneously (e.g., to support multiple higher layer applications), there can be multiple, independently operating,
segmentors within the equipment.

Due to the tight time schedule between the Committee’s last working group meeting and the publication deadline for
these Proceedings, it was not possible to complete a paper containing the SDL description and encodings for the Segmentor.
I hope to be able to provide that paper as a handout at the Conference.

3.2 Data Link

The data link state machine is the heart of the AX.25 protocol. It provides all logic necessary to set-up and tear-down
connections between two stations and to exchange information in a connectionless (i.e., via UI frames) and
connection-oriented (i.e., via I frames with recovery procedures) manner.

One data link state machine exists per data link. Since a single piece of equipment may have multiple data links in
operation simultaneously (e.g., to support multiple higher layer applications), there can be multiple, independently
operating, data link machines within the equipment.

The data link state machine SDL description is contained in a companion paper found elsewhere in these Proceedings.

3.3 Link MuItiplexor

The link multiplexor state machine allows one or more data links to share the same physical (radio) channel. It
provides the logic necessary to give each data link an opportunity to use the channel, according to the rotation algorithm
embedded within the link multiplexor.

One link multiplexor state machine exists per physical channel. If a single piece of equipment has multiple physical
channels operating simultaneously, then an independently operating link multiplexor state machine exists for each channel.

The link multiplexor state machine SDL description is contained in a companion paper found elsewehere in these
Proceedings.

3.4 Physical

The physical state machine exists at the physical layer of the Open Systems Interconnection Reference Model. The
physical state machine manipulates the radio transmitter and receiver.

One physical state machine exists per physical channel.

Because different types of radio channel operations are used, the physical state machine comes in different flavors. The
intent of each flavor is to hide the peculiar characteristics of each radio channel from the higher layer state machines. Two
physical state machines have been defined in SDL: ,

a) a simplex physical state machine, suitable for use on simplex radio channels (such as 145.01 MHz FM) or on a
classical FM repeater. This machine incorporates the CSMA/CD and p-persistence contention mechanisms to permit
effective sharing of the radio channel with other stations.

b) a simple full duplex physical state machine. Although full-duplex radio channels are not extensively used to date,
the full duplex physical SDL description was developed to illustrate how different flavors of physical channel can work with
the other state machines proposed within AX.25 Revision 2.1. This particular full duplex state machine assumes that two
stations are assigned a radio channel pair for full-time use (no sharing with other stations), such as would occur between two
network backbone switching nodes. Although no sharing is envisioned, intermediate digipeaters and repeaters are allowed

154

Overview of AX.25 State Machines & Primitives

I))[J (data link) primitives

AX.25 .’

. .
.:

DL (data link) primitives

_’

LM (link; mux) primitives

:

:.
. .,. .:

PH (physical) primitives

155

for in the SDL description.

The simplex physical state machine SDL description is contained in a companion paper found elsewhere in these
Proceedings. Time did not permit the completion of the paper describing the full duplex physical state machine, but I hopeI
to have it available as a handout at the Conference.

4. SDL Symbol Definition

The next figure defmes the symbols used in all of the SDL graphic descriptions. You may fmd it helpful to review the
text below and the figure along with an actual SDL description from one of the companion papers. The SDL descriptions
combine together the operations described by the various symbols into a sequence which is read down the page.

The state symbol denotes the resting states of the extended ftite state machine. Each state is numbered and named.
The sequence number simply indicates the order in which the states are drawn in the SDL. All the permitted sequences of
operations from a given state originate below the corresponding state symbol. For convenience, each SDL machine is
accompanied by a summary page which lists, among other things, all of the state names and their corresponding numbers.

Input signal reception (primitive) symbols have notches on either the left or right side. By convention, inputs with
the notch on the left are from higher layer (or equal layer) state machines; inputs with the notch on the right are from the
lower layer state machine. The name of the input primitive is labeled within the symbol. The SDL machine summary page
lists all of the input primitives by name and source.

In addition, the left-notch input signal symbol is used for timer expiration. The number of the expired timer is written
inside the symbol. All timers are numbered, by convention, with indications beginning ‘“T” and then (usually) a three-digit
number. The “hundreds” digit indicates the Open Systems Interconnection Reference Model level number at which the state
machine resides; e.g., Tlxx timers are physical layer, T2xx are data link layer timers, etc. However, in order to prevent
confusion, the present indicators Tl and T3 are used for AX.25 timers. The SDL machine summary page lists all of the timers
by their indicator, and gives a brief description of the purpose of each timer.

Similarly, output signal reception (primitive) symbols have pointers on either the left or right side. Output symbols
pointing to the left are outputs to the higher layer (or equal layer) state machines; outputs pointing to the right are to the
lower layer state machines. The name of the output primitive is written within the symbol. The SDL machine summary page
lists all of the output primitives by name and destination.

Internal signal symbols are used to post items onto queues (points to left) and to trigger the state machine when
something is waiting on the queue to be popped off (notch on left). Each internal signal has a description label identifying
which queue is involved, and what material is being posted or popped. The SDL machine summary page describes each
internal queue used by the state machine.

The save symbol is used to indicate that a particular input event does not cause operations to be done in the present
state. Instead, that particular input event is “saved” until the state machine (triggered by other events) has reached a new and
different state.

The processing description symbol contains within it a description of internal action(s) executed by the state machine.
Examples of these actions are starting and stopping timers, setting and clearing flags, and setting values into variables. .

The test symbol is used for branching.
appropriate branch is taken.

The text written within the symbol is posed as a question, and then the

The subroutine symbol is used to encapsulate fkquently used sequences of steps; the name of the subroutine is written
within the symbol. The expansion of the subroutine is listed at the end of the SDL machine description. Subroutine
expansions begin with a subroutine start symbol, flow down the page through the specified sequence of operations, and end
with the return-from-subroutine symbol. Note that subroutines are not permitted to contain states, nor are they permitted to
branch into different return legs. Each subroutine has a single point of return.

156

3cconnected

/‘I

State

7
SABM

UI3command
(P=O)

Signal Reception

Signal Generation

Internal Signal
Generation & Reception

Save a signal until a new
state is reached

r-lstop T3
start Tl Processing Description

StartaIDtranS-
mitter

I
ci3-

Subroutine Call

Subroutine Start

Return from Subroutine

