
The KISS TNC: A simple Host-to-TNC communications protocol

Mike Chepponis, K3MC

Phil Karn, KA9Q

ABSTMCT

The KISS’ TNC provides direct computer to TNC communication using a simple
protocol described here. Many TNCs now implement it, including the TAPR TNC-1
and TNC-2 (and their clones), the venerable VADCG TNC, the AEA PK-232/PK-87
and all TNCs in the Kantronics line. KISS has quickly become the protocol of choice
for TCP/IP operation and multi-connect BBS software.

1. Introduction

Standard TNC software was written with human users in mind; unfortunately, commands and
responses well suited for human use are ill-adapted for host computer use, and vice versa. This is espe-
cially true for multi-user servers such as bulletin boards which must multiplex data from several network
connections across a single host/TNC link. In addition, experimentation with new link level protocols is
greatly hampered because there may very well be no way at all to generate or receive frames in the
desired format without reprogramming the TNC.

The KISS TNC solves these problems by eliminating as much as possible from the TNC software,
giving the attached host complete control over and access to the contents of the HDLC frames
transmitted and received over the air. This is central to the KISS philosophy: the host software should
have control over all TNC functions at the lowest possible level.

The AX.25 protocol is removed entirely from the TNC, as are all command interpreters and the
like. The TNC simply converts between synchronous HDLC, spoken on the full- or half-duplex radio
channel, and a special asynchronous, full duplex frame format spoken on the host/TNC link. Every
frame received on the HDLC link is passed intact to the host once it has been translated to the asyn-
chronous format; likewise, asynchronous frames from the host are transmitted on the radio channel
once they have been converted to HDLC format.

Of course, this means that the bulk of AX.25 (or another protocol) must now be implemented on
the host system. This is acceptable, however, considering the greatly increased flexibility and reduced
overall complexity that comes from allowing the protocol to reside on the same machine with the appli-
cations to which it is closely coupled.

It should be stressed that the KISS TNC is intended only as a stopgap. Ideally, host computers
would have HDLC interfaces of their own, making separate TNCs unnecessary. [I 51 Unfortunately,
HDLC interfaces are rare, although they are starting to appear for the IBM PC. The KISS TNC therefore
becomes the “next best thing” to a real HDLC interface, since the host computer only needs an ordi-
nary asynchronous interface.

1 “Keep It Simple, Stupid”

38

2. Asynchronous Frame Format

The “asynchronous packet protocol” spoken between the host and TNC is very simple, since its
only function is to delimit frames. Each frame is both preceded and followed by a special FEND (Frame
End) character, analogous to an HDLC flag. No CRC or checksum is provided. In addition, no RS-232C
handshaking signals are employed.

The special characters are:

1 Abbreviation Description Hex value1

The reason for both preceding and ending frames with FENDS is to improve performance when
there is noise on the asynch line. The FEND at the beginning of a frame serves to “flush out” any
accumulated garbage into a separate frame (which will be discarded by the upper layer protocol) instead
of sticking it on the front of an otherwise good frame. As with back-to-back flags in HDLC, two FEND
characters in a row should not be interpreted as delimiting an empty frame.

3. Transparency

Frames are sent in 8-bit binary; the asynchronous link is set to 8 data bits, 1 stop bit, and no par-
ity. If a FEND ever appears in the data, it is translated into the two byte sequence FESC TFEND (Frame
Escape, Transposed Frame End). Likewise, if the FESC character ever appears in the user data, it is
replaced with the two character sequence FESC TFESC (Frame Escape, Transposed Frame Escape).

As characters arrive at the receiver, they are appended to a buffer containing the current frame.
Receiving a FEND marks the end of the current frame. Receipt of a FESC puts the receiver into
“escaped mode”, causing the receiver to translate a following TFESC or TFEND back to FESC or FEND,
respectively, before adding it to the receive buffer and leaving escaped mode. Receipt of any character
other than TFESC or TFEND while in escaped mode is an error; no action is taken and frame assembly
continues. A TFEND or TESC received while not in escaped mode is treated as an ordinary data charac-
ter.

This procedure may seem somewhat complicated, but it is easy to implement and recovers quickly
from errors. In particular, the FEND character is never sent over the channel except as an actual end-of-
frame indication. This ensures that any intact frame (properly delimited by FEND characters) will always
be received properly regardless of the starting state of the receiver or corruption of the preceding
frame.

This asynchronous framing protocol is identical to “SLIP” (Serial Line IP), a popular method for
sending ARPA IP datagrams across asynchronous links. It could also form the basis of an asynchronous
amateur packet radio link protocol that avoids the complexity of HDLC on slow speed channels.

4. Control of the KISS TNC

Each asynchronous data frame sent to the TNC is converted back into “pure” form and queued
for transmission as a separate HDLC frame. Although removing the human interface and the AX.25
protocol from the TNC makes most existing TNC commands unnecessary (i.e., they become host func-
tions), the TNC is still responsible for keying the transmitter’s PTT line and deferring to other activity on

the radio channel. It is therefore necessary to allow the host to control a few TNC parameters, namely
the transmitter keyup delay, the transmitter persistence variables and any special hardware that a partic-
ular TNC may have.

39

To distinguish between command and data frames on the host/TNC link, the first byte of each
asynchronous frame between host and TNC is a “type” indicator. This type indicator byte is broken
into two 4-bit nibbles so that the low-order nibble indicates the command number (given in the table
below) and the high-order nibble indicates the port number for that particular command. In systems
with only one HDLC port, it is by definition Port 0. In multi-port TNCs, the upper 4 bits of the type indi-
cator byte can specify one of up to sixteen ports. The following commands are defined in frames to
the TNC (the “Command” field is in hexadecimal):

Command Function
0 Data frame

Comments
The rest of the frame is data to be sent on the HDLC channel.

1 TXDELAY The next byte is the transmitter keyup delay in 10 ms units. The
default start-up value is 50 (i.e., 500 ms).

2 P The next byte is the persistence parameter, p, scaled to the
range 0 - 255 with the following formula:

P=p “ 2 5 6 - l

The default value is P = 63 (i.e., p = 0.25).

3 SlotTime The next byte is the slot interval in 10 ms units. The default is
10 (i.e., 1 OOms).

4 TXtaiI The next byte is the time to hold up the TX after the FCS has
been sent, in 10 ms units. This command is obsolete, and is
included here only for compatibility with some existing imple-
mentations.

5 FullDuplex The next byte is 0 for half duplex, nonzero for full duplex. The
default is 0 (i.e., half duplex).

6 SetHardware Specific for each TNC. In the TNC-1, this command sets the
modem speed. Other implementations may use this command
for other hardware-specific functions.

FF Return Exit KISS and return control to a higher-level program. This is
useful only when KISS is incorporated into the TNC along with
other applications.

The following types are defined in frames to the host:

Type
0

Function
Data frame

Comments
Rest of frame is data from the HDLC channel

No other types are defined; in particular, there is no provision for acknowledging data or com-
mand frames sent to the TNC. KISS implementations must ignore any unsupported command types.
All KISS implementations must implement commands 0,1,2,3 and 5; the others are optional.

5. Buffer and Packet Size Limits

One of the things that makes the KISS TNC simple is the deliberate lack of TNC/host flow control.
The host computers run a higher level protocol (typically TCP, but AX.25 in the connected mode also
qualifies) that handles flow control on an end-to-end basis. Ideally, the TNC would always have more
buffer memory than the sum of all the flow control windows of all of the logical connections using it at
that moment. This would allow for the worst case (i.e., all users sending simultaneously). In practice,
however, many (if not most) user connections are idle for long periods of time, so buffer memory may
be safely “overbooked”. When the occasional “bump” occurs, the TNC must drop the packet

gracefully, i.e., ignore it without crashing or losing packets already queued. The higher level protocol IS;
expected to recover by “backing off” and retransmitting the packet at a later time, just as it does
whenever a packet is lost in the network for any other reason. As long, as this occurs infrequently, the
performance degradation is slight; therefore the TNC should provide as much packet buffering as possi-
ble, limited only by available RAM.

Individual packets at least 1024 bytes long should be allowed. As with buffer queues, it is recom-
mended that no artificial limits be placed on packet size. For example, the K3MC code running on a
TNC-2 with 32K of RAM can send and receive 30K byte packets, although this is admittedly rather
extreme. Large packets reduce protocol overhead on good channels. They are essential for good per-
formance when operating on high speed modems such as the new WA4DSY 56 kbps design.

6. Persistence

The P and SlotTime parameters are used to implement true p-persistent CSMA. This works as
follows:

Whenever the host queues data for transmission, the TNC begilns monitoring the carrier detect
signal from the modem. It waits indefinitely for this signal to go inactive. When the channel clears, the
TNC generates a random number between 0 and 1. 2 If this number is less than or equal to the parame-
ter p, the TNC keys the transmitter, waits .Ol * TXDELAY seconds, and transmits all queued frames.
The TNC then unkeys the transmitter and goes back to the idle state. If the random number is greater
than p, the TNC delays .Ol + SlotTime seconds and repeats the procedure beginning with the sampling
of the carrier detect signal. (If the carrier detect signal has gone active in the meantime, the TNC again
waits for it to clear before continuing). Note that p=l means “transmit as soon as the channel clears”;
in this case the p-persistence algorithm degenerates into the 1 -persistent CSMA generally used by con-
ventional AX.25 TNCs.

p-persistence causes the TNC to wait for an exponentially-distributed random interval after sens-
ing that the channel has gone clear before attempting to transmit. With proper tuning of the parameters
p and SlotTime, several stations with traffic to send are much less likely to collide with each other
when they all see the channel go clear. One transmits first and the others see it in time to prevent a
collision, and the channel remains stable under heavy load. See references [‘I 1 through [I 31 for details.

We believe that optimum p and SlotTime values could be computed automatically. This could be
done by noting the channel occupancy and the length of the frames on the channel. We are proceeding
with a simulation of the p-persistence algorithm described here that wle hope will allow us to construct
an automatic algorithm for p and SlotTime selection.

We added p-persistence to the KISS TNC because it was a convenient opportunity to do so.
However, it is not inherently associated with KISS nor with new protocols such as TCP/IP. Rather, per-
sistence is a channel access protocol that can yield dramatic performance improvements regardless of
the higher level protocol in use; we urge it be added to every TNC, whether or not it supports KISS.

7. Implementation History

The original idea for a simplified host/TNC protocol is due to Brian Lloyd, WBGRQN. Phil Karn,
KA9Q, organized the specification and submitted an initial version on 6 August 1986. As of this writ-
ing, the following KISS TNC implementations exist:

* To conform to the literature, here p takes on values between
use in a fixed point microprocessor so the KISS TNC actually WOI

range 0 to 255. To avoid confusion, we will use lower-case p to
whenever we mean the latter (O-255).

0 to 1. However, fractions are difficult to
,ks with P values that are resealed to the
mean the former (O-1) and upper-case P

41

$

TNC type Author Comments
TAPR TNC-1 Marc Kaufman, WBGECE Both download and dedicated ROM versions.
& clones
TAPR TNC-2 Mike Chepponis, K3MC First implementation, most widely used. Exists in
& clones both downloadable and dedicated ROM versions.
VADCG TNC Mike Bruski, AJ9X Dedicated ROM.
& Ashby TNC
AEA PK-232 & PK.87 Steve Stuart, N6lA Integrated into standard AEA firmware as of 21

January 1987. The special commands “KISS
ON” and “KISS OFF” (I) control entry into KISS
mode.

Kantronics Mike Huslig Integrated into standard Kantronics firmware as of
July 1987..

The AEA and Kantronics implementations are noteworthy in that the KISS functions were written
by those vendors and integrated into their standard TNC firmware. Their TNCs can operate in either
KISS or regular AX.25 mode without ROM changes. The TNC-1 and TNC-2 KISS versions were written
by different authors than the original AX.25 firmware. Because of the specialized development environ-
ment used for the TNC-1 code, and because original source code for the TNC-2 was not made avail-
able, the KISS authors wrote their code independently of the standard AX.25 firmware. Therefore these
TNCs require the installation of nonstandard ROMs. Two ROMs are available for the TNC-2. One con-
tains “dedicated” KISS TNC code; the TNC operates only in the KISS mode. The “download” version
contains standard N2WX firmware with a bootstrap loader overlay. When the TNC is turned on or reset,
it executes the loader. The loader will accept a memory image in Intel Hex format, or it can be told to
execute the standard N2WX firmware through the “H”3 command. The download version is handy for
occasional KISS operation, while the dedicated version is much more convenient for full-time or demo
KISS operation.

The code for the TNC-1 is also available in both download and dedicated versions. However, at
present the download ROM contains only a bootstrap; the original ROMs must be put back in to run the
original TNC software.

8. Credits

The combined “Howie + downloader” ROM for the TNC-2 was contributed by WA7MXZ. This
document was expertly typeset by Bob Hoffman, N3CVL.

9. Bibliography

1 . Tanenbaum, Andrew S., “Computer Networks” pp. 288-292. Prentice-Hall 1981.

2 . Tobagi, F. A.: “Random Access Techniques for Data Transmission over Packet Switched Radio
Networks,” Ph.D. thesis, Computer Science Department, UCLA, 1974.

3 . Kleinrock, L., and Tobagi, F.: “Random Access Techniques for Data Transmission over Packet-
Switched Radio Channels,” Proc. NCC, pp. 187-201, 1975.

4 . Tobagi, F. A., Gerla, M., Peebles, R.W., and Manning, E.G.: “Modeling and Measurement Tech-
niques in Packet Communications Networks,” Proc. IEEE, vol. 66, pp. 1423-1447, Nov. 1978.

5 . Lam, S. S.: “Packet Switching in a Multiaccess Broadcast Channel”, Ph.D. thesis, Computer Sci-
ence Department, UCLA, 1974.

6 . Lam, S. S., and Kleinrock, L.: “Packet Switching in a Multiaccess Broadcast Channel: Dynamic
Control Procedures,” IEEE Trans. Commun., vol COM-23, pp. 891-904, Sept. 1975.

3 For “Howie”, of course.

42

7 .

8 .

9 .

10 .

11.

12.

13 .

14.

15 .

Lam, S. S.: “A Carrier Sense Multiple Access Protocol for Local Networks,” Comput. Networks,
vol 4, pp. 21-32, Feb. 1980

Tobagi, F. A.: “Multiaccess Protocols in Packet Communications Systems,” IEEE Trans. Commun.,
vol COM-28, pp. 468-488, April 198Oc.

Bertsekas, D., and Gallager, R.: “Data Networks”, pp. 274-282 Prentice-Hall 1987.

Kahn, R. E., Gronemeyer, S. A., Burchfiel, J., and Kungelman, R. C. “Advances in Packet Radio
Technology,” hoc. I E E E pp. 1468-1496. 1978.

Takagi, H.: “Analysis of Polling Systems,” Cambridge, MA MIT Press 1986.

Tobagi, F. A., and Kleinrock, L. “Packet Switching in Radio Channels: F’art II - The Hidden Terminal
Problem in CSMA and Busy-Tone Solution,” IEEE Trans. Commun. COM-23 pp. 1417-1433.
1975.

Rivest, R. L.: “Network Control by Bayessian Broadcast,” Report MIT/LCS/TM-285. Cambridge,
MA. MIT, Laboratory for Computer Science. 1985.

Karn, P. and Lloyd, B.: “Link Level Protocols Revisited,” ARRL Amateur Radio fifth Computer Net-
working Conference, pp. 5.25-5.37, Orlando, 9 March 1986.

Karn, P., “Why Do We Even Need TNCs Anyway,” Gateway, vol. 3 no. 2, September 5, 1986.

43

