
Another Look at Authentication

Phil Karn, KA9Q

ABSTRACT

A simple and effective technique for packet authentication in a datagram net-
work is described that is based on the Data Encryption Standard (DES). In accor-
dance with FCC rules, the actual data is not encrypted; rather DES is used to com-
pute a special “cipher checksum” that is appended to the unencrypted user data
before transmission. The recipient recomputes the cipher checksum and compares it
against the incoming value, thereby detecting bogus or altered packets. This tech-
nique is potentially useful in a wide variety of amateur radio applications in addition
to packet radio; for example, it could provide a secure control link for a remote
repeater site.

1. Introduction

At the 5th ARRL Computer Networking Conference, Hal Feinstein described a technique for
authenticating amateur packet transmissions [l] useful for protecting radio control links. In the com-
mercial and military worlds, the solution is simple: just encrypt everything. Not only does this protect
against unauthorized commands from those not knowing the key, it also hides the command informa-
tion itself. In the amateur service, however, this is prohibited by FCC rules. [2] The only exception
is for command links in the Amateur Satellite Service; [3] there is no corresponding exception for
terrestrial links.

Fortunately, as Hal showed in his paper, a rule change is not necessary to add security legally to
a control link. Cryptographic techniques can be used to add “authentication” to an unencrypted
command to verify that it was sent by an authorized station. Hal assumed that. a virtual circuit would
be set up between the control station and the remote site, and as a result his technique is quite
involved. I have devised a similar but much simpler approach made possible by the use of a datagram
protocol.

2. The Data Encryption Standard
As in Hal’s approach, I use the Data Encryption Standard (DES). [4,5] A full description is out-

side the scope of this paper; however, I will review two of its properties since they are important to
the proposed authentication scheme.

1 . The internals of DES are public knowledge, since the complete specifications have been widely
published. Like a well-designed safe, however, knowing how DES works isn’t much help in
cracking it; only the key (or the combination) need be secret for good security. This is what
allowed DES to become the first-ever cryptographic standard; similarly it allows us to establish
an amateur authentication standard so that each system operator doesn’t have to reimplement
the wheel.

2 . In practice, DES has been highly resistant to “known plaintext” attacks. [6,7,8,9,10] That is,
even with a plaintext/ciphertext “matched pair”, the algorithm is so nonlinear that at present
there is no known way (outside of the NSA, at least) to find the key that produced the transfor-
mation other than by trying all possible 2 56 keys in the algorithm until you find the one that
works. As we will see, this property is very important to the authentication scheme described
here, since each transmission contains both the ciphertext and the plaintext that produced it. It

should be pointed out, however, that as yet there is no published mathematical proof that a
known-plaintext attack against DES requires an exhaustive search. Despite some “suspicious”
structure in the algorithm that reduces the required brute-force effort somewhat, the accusation
that a “trap door” may have been planted in the algorithm by its designers has yet to be either
proven or disproven.

As an aside, it is this resistance to known plaintext attack that makes the M/A-Corn Videoci-
pher system (which encrypts the audio with DES) so hard to break. Anyone can buy a box, subscribe
to a service and get millions of ciphertext/plaintext pairs. However, that doesn’t help in finding out
the DES key in use, which you would need to build a pirate decoder. The key is kept inside the
decryption device in a battery-backed register which can’t be read from the device pins. Only a physi-
cal attack is likely to work here, e.g., dissolving the epoxy off the chip with solvents and reading the
key from the exposed chip with a scanning electron microscope of the type designed for debugging
ICs under test. This illustrates an important practical point in cryptography: key security, not the
mathematical strength of the encryption algorithm, is usually the weak link. Key security is harder
than you might think, especially when many people are involved.

3. DES Modes of Operation

The basic DES algorithm transforms 64-bit data blocks between pl.aintex! and ciphertext form
under control of a 56-bit key. As long as the key is constant, enciphering a given 64-bit data block
always gives the same 64-bit block of ciphertext. If you encrypt data directly in this way, you are
using DES in the Electronic Code Book (ECB) mode. ECB can result in repeated patterns when, for
example, strings of blanks are encrypted. To avoid this potential problem, several modes all involving
feedback are recommended by the NBS. [ll] One of these is “cipher block chaining” (CBC). In this
mode, each 64-bit block of plaintext is exclusive-ored with the DES ciphertext output for the last 64-
bit data block before being encrypted. (Since there is no preceding block: of ciphertext the first block
of plaintext is instead exclusive-ored with a prearranged “initialization vector”). The ciphertext at a
given point in the message therefore depends on all of the data preceding it, not just the current
block, Any change therefore “propagates” throughout the rest of the message.

4. Authentication With DES

This error-propagation property is the basis of the authentication scheme, which can now be
described.

Encrypt each packet with DES in the cipher block chaining mode. Then send the original unen-
crypted packet along with the last cipher word (64 bits) of the encrypted version. The receiver also
encrypts the packet and compares its final cipher word with the received version; if they match, the
packet is accepted. Changing even one bit in the message results in a completely unpredictable
change in the cipher checksum with only 1 chance in 2 64 of escaping detection by the receiver.

This technique amounts to adding a “cipher checksum” to the packet, an apt description since
it functions much like an ordinary checksum or CRC. The only difference is that the “checksum
algorithm” must protect against corruption or spoofing by malevolent humans as well as by nature,
and therefore must be more sophisticated.

For example, it would not be sufficient to generate the cipher checksum by computing a normal
checksum over the packet and then encrypting it before transmission. A. spoofer could carefully con-
struct a packet to have the same checksum as a valid packet he had seen earlier on the channel, and
then append the same cipher checksum. The size of the cipher checksum is also very important. Ordi-
nary checksums, designed to protect only against random natural corruption, are often only 16 bits
wide. It is not that impractical to try all 65,536 possible checksums until the correct one is found by
chance. Since the cipher checksum produced by DES is 64 bits wide, trying all possible values is out
of the question. Naturally, such a wide field also provides superior protection against corruption by
natural causes.

83

5. Playback Attacks
Hal’s paper discusses in detail the problem of the “playback attack”. Even though the bad guy

might not be able generate his own message or corrupt a real one without upsetting the authentication
mechanism, he could record and play back a valid message at a later time in an attempt to repeat the
same operation.

However, using a transport (level 4) protocol designed for a datagram network neatly solves this
problem. Such protocols are already designed to detect and reject duplicate packets arriving minutes
or even hours after the original. This protection is necessary because a dat.agram network will occa-
sionally deliver a long-delayed duplicate of a packet, usually when its routing algorithm is trying to
recover from a failing or congested link. For example, TCP 1121 uses 32.bit sequence numbers, so
over 4 gigabytes must be sent on a given connection before the sequence numbers wrap around. In
most implementations, subsequent connections generally cycle through all possible port numbers on
the originating end, and this adds another 16 bits to the “sequence space”. Even when the exact
same pair of port numbers is reused, a clock has incremented the initial sequence number for the
connection fast enough that it is very unlikely to reuse the sequence numbers from the last incarna-
tion of the connection. In short, a properly implemented TCP can go a very long time before it reuses
the exact same combination of source address, destination address, source port, destination port, send
sequence number and receive sequence number, long enough for the DES key to have been con-
veniently changed in the meantime!

Connectionless, transaction-oriented transport protocols (such as might be used for the remote
control of a packet switch or repeater) can protect against duplicates in several ways: with sequence
numbers as in a connection oriented protocol, with timestamping (rejecting packets older than some
limit), or by designing the set of commands in an “idempotent” fashion, which means that receiving
a command more than once causes no further change in the state of the system being controlled.

6. Implementation Issues

How could a cipher checksum be added to TCP/IP, and how much of the packet should it
cover? If the authentication is to be end-to-end, it can’t include the IP header, [13] since at least the
time-to-live (TTL) field is modified by each IP packet switch. The data covered by the cipher check-
sum must be delivered unchanged for the cipher checksum to be valid; therefore it should cover only
the data following the IP header. While this would seem to open up devious opportunities based on
modifying the IP header, this really isn’t a problem. TCP and UDP [14] incorporate “pseudo-
headers” into their checksum algorithms that include the IP source and destination addresses, proto-
col type and data length. Changing any of these fields in the IP header would result in a checksum
error when the packet reaches the destination, and of course any attempt to modify the checksum
field in the TCP or UDP header would be detected by the cipher checksum.

Another question is, where should the cipher checksum go ? It would be nice to find a place to
put it that wouldn’t make the resulting datagram incompatible with versions of TCP/IP that didn’t
understand it. This suggests placing it in one of the option fields, either in IP or TCP (assuming TCP
is used). If it is put in the TCP options field, one runs afoul of the specification that says options
should be present only in SYN segments (connection requests). New TCP options are also
discouraged. This leaves the IP options field, of which there are relatively many, some of which are
not understood by every implementation. To allow for this, option codes always include the length of
the option, so that an unknown option type can be skipped over. Putting the cipher checksum into
an IP option also allows it to be used with transport protocols other than TCP (e.g., UDP).

Other minor issues, such as padding and the choice of initialization vector, are easily resolved.
Since the DES CBC mode operates on 8-byte blocks of data, data fields not a multiple of 8 bytes long
should be padded out with zeros before encryption. The initialization vector (IV) required by the
CBC algorithm could serve as an additional key element; it would be then necessary to know both the
56.bit DES key and the 64.bit IV in order to generate and check authenticators. For the sake of sim-
plicity, however, the IV should probably be standardized (e.g., all zeroes) and only the DES key used
for security.

7, Summary

Authentication is far easier to implement in a datagram network than in one based on virtual
circuits, resulting in a much simpler and more elegant design. Since there is only one type of packet
at the datagram level, there is only one type of authentication operation. There is no need for a “ses-
sion key” or “challenge” at the beginning of a connection should one exist at a higher protocol layer.
Each datagram is individually authenticated to protect it against spoofing or corruption, and eliminat-
ing the possibility of a bad guy taking over a connection (assuming one exists) after it has been esta-
blished. The measures already in place to protect against the accidental packet duplication possible in
a datagram network automatically guard against playback attacks.

A public-domain implementation of DES in C is available from the author.

8. References

1 .

2 .

3 .

4 .

5

6 .

7

8 .

9 .

10 .

11 .

12 .

13 .

14 .

Feinstein, Hal, WB3KDU, “Authentication of the Packet Radio Switch Control Link”, Proceed-
ings of the ARRL Amateur Radio 5th Computer Networking Confe.rence, p 5.12.

Federal Communication Commission rules, Section 97.117 (Codes and Ciphers Prohibited).

Ibid, section 97.42 1 (a) (Telecommand Operation).

Federal Information Processing Standards Publication 46, “Data Encryption Standard”, January
15, 1977.

American National Standards Institute, “American National Standard Data Encryption Algo-
rithm”, ANSI X3.92-1981.

Davio, et al, “Analytical Characteristics of the DES”, Crypt0 ‘83, Santa Barbara.

Sugarman, “On Foiling Computer Crime”, ZEEE Spectrum, July 1979.

Davies, “Some Regular Properties of the ‘Data Encryption Standard’ Algorithm”, National.
Physical Laboratory, Teddington, Middlesex, UK.

Lexar Corporation, “An Evaluation of the NBS Data Encryption Standard”.

Branstad et al, “Report of the Workshop on Cryptography in Support of Computer Security”,
National Bureau of Standards report NBSIR 77-1291.

Federal Information Processing Standards Publication, “Announcing the Standard for DES1
Modes of Operation”.

Postel, ed, “Transmission Control Protocol Specification”, ARIPA RFC 793.

Postel, ed, “Internet Protocol Specification”, ARPA RFC 791.

Postel, ed, “User Datagram Protocol”, ARPA RFC 768.

85

