
A FEW THOUGHTS ON USER VERIFICATION WITHIN A PARTY-LINE NETWORK

Paul Newland, ad7i
Post Office Box 205

Holmdel, New Jersey 07733

Abstract

This paper presents an idea for
verifying that a user within a party-line
network is who he or she claims to be.
The idea assumes that the channel is a
party-line and that potential intruders
will monitor authorized communications
and may attempt to masquerade as
authorized users. No attempt is made to
encrypt the authorized user's data for
transmission over the party-line.

Introduction

Verification of a users identity to
a host, historically, has been a major
problem. At the lowest level of
protection, many hosts require the user
to "login" before he or she can make use
of any of the system's protected
resources. Login procedures, making use
of passwords, are useful on most systems
because it is assumed that a potential
intruder will not be able to monitor
easily the login process and determine
someone else's password.

However, in an open system
interconnected bY unencrypted data
communications radios (i.e., a party-
line), the login process using passwords
is ineffective because any casual
observer can, by monitoring the radio
channel, determine any other user's
password. Also, once the user is logged
in, there is nothing to prevent someone
else from masquerading as the authorized
user.

Offered below is an alternative
approach to passwords for openr
unencrypted, communications with a host.
The method assumes that the user wants
only to give commands to the host, not to
do file transfers. However, with a few
embellishments, the system could be
expanded to include file transfers. The
system would be as follows.

Proposal

When the host gives a prompt to the
user, telling the user that she or he may
send it the next command, the prompt will
include a random number (RN) as part of

the prompt. Each time a prompt is
transmitted, a new random number is
included. The host then encrypts the
last RN transmitted using the key-for-
the-day (KEY) previously agreed to by
both the authorized user and the host; I
will call this "Encrypted RN" the "ERN" .
The host would then place the ERN in
storage for safe keeping and quick
access. The user, on receipt of the new
RN, would also encrypt it using the KEY
(obtaining the same ERN if the KEYS are
the same) and would save it, too, in a
handy place. When the user wanted to
issue a command to the host, it would
give the command, as the host requires,
but it would include the latest
calculated ERN. When the host receives
the command line, it compares the ERN
received from the user with the ERN it
calculated from the last RN transmitted
as part of the prompt. If they match,
the host assumes that the user knows the
correct key. Thus, by returning the
expected ERN, the user has proved to the
host that he or she is authorized to
access the system.

Vulnerabilities

This scheme is not without its
problems. Because the key is changed
only once a day, the range of numbers
used for RNs must be large to ensure that
RNs are not repeated during the 24-hour
period. Also, the range of RNs must be
large enough to make the probability of
either determining the KEY or "guessing"
the ERN sufficiently small. A RN of 64
bits should be large enough to overcome
this problem. Another important
consideration is the quality of the
encryption technique. For Amateur Radio
applications the DEA (that's Data
Encryption Algorithm -- the software
approach to DES) should be suitably
strong.

This system is vulnerable to the
sophisticated intruder who monitors the
channel to determine the user's ERN and,
before the user's packet transmission to
the host is complete, the intruder jams
the channel to block the user's packet
from reaching the host. Next, the
intruder sends his or her own packet with
an illicit command and the ERN received

4.89

from the user. This scenario can be
avoided by having the user transmit the
ERN as the last item contained in the
data segment of the packet.

Implementation

How might a system such as this be
implemented? One way would be to include
the host's 64 bit RN in the command
prompt using hex notation and prefacing
the RN with a special character sequence,
perhaps composed of an unlikely sequence
of punctuation characters so that a
computer could identify it. Here's an
example where the normal host system
prompt is the word "yes?" and is prefaced
by the RN.

://:OFEB23178ED83AgA yes?

The user% terminal emulation program
(or possibly, packet controller (TNC))
would assume that a new RN follows the
escape sequence ://: and that it is in
hex notation. It would, using the key-
for-the-day, encrypt the RN to create an
ERN to be saved for future use. When the
user gives a command to the host that
requires the transmission of the latest
ERN, the operator would tell the terminal
program (or again, the TNC) to
substitute &e ERN in place of an escape
sequence. When the terminal program sees
the escape sequence (such as ##)I it
would substitute the ERN (with a
different preface than the RN) before
transmission. An example of a command
line with the escape sequence might be:

COFFEEPOT ON ##

The terminal program would substitute the
escape sequence (##) with the last
calculated ERN. An example:

COFFEEPOT ON /::/07EAF832BlAgEgA2

A method such as this would add about 20
characters 'of overhead to each packet
that contained a command for
"protected" host. However, if th:
protection is adequate for the
environment, that appears to be a small
price to pay.

Extensions

Again, although the idea presented
here is simple, it should prove adequate
protection against the more-than-average
hostile user who might try to disrupt
authorized communications. Other
extensions to improve its protection
might include calculation of a checksum
or a more complex data reduction
technique across all data within the

frame and use that as another dimension
for encryption to create the ERN[l].
Certainly what has been presented here is
only a first step. I encourage others to
pursue this and additional methods of
providing authentication within an open,
party-line, network.

Notes

[l] Private communication with Mr.
Philip Karn, ka%b Bell
Communications Research.

4 . 9 0

