
A MORE WATCHFUL F?ATCHDOG FOR MICROCOMPUTERS

Paul Newland, ad7i
Post Office Box 205

Holmdel, New Jersey 0 7 7 3 3

Introduction

Many hardware/software watchdog
timers consist of a software routine that
repetitively triggers a hardware
retriggerable monostable. If the
monostable ever times out, the computer
is reset. This technique, although
useful, is not extremely reliable under
most software/hardware insane conditions.
This paper discusses an alternative
approach that may prove to be more
reliable under various fault conditions.

Discussion

The improved system offered here
involves the use of a serial pseudo-
random number (PN) generator, implemented
in software, and a serial pseudo-random
number detector, implemented in hardware.
During the execution of the system
program, a small portion of the CPU's
time is allocated to generating another
bit of the PN sequence and dumping it
(and an associated clock signal) out a
parallel port to the hardware PN
detector.

When the clock lead from the
parallel port goes high, the hardware
checks to see if the data bit is a valid
part of the PN sequence. If so, it does
nothing. If it is incorrect, it resets
the computer and doesn't allow the PN
detector to issue another reset for a
pre-determined period of time. This time
delay is necessary to allow the computer
to restart all processes and get the PN
generator and PN detector back into
synchronization.

While this PN checking is going on,
additional hardware checks a tap from the
hardware shift register to ensure that
data is changing state occasionally. A
failure of data change would indicate
that either the computer is not clocking
the external hardware or the computer is
"fooling" the PN detector by giving it a
degenerate PN sequence[l].

Implementation

Figure 1 shows a subroutine, written
in Zilog mnemonics for the 280 (t m)

processor, that implements a serial PN
generator. The describing polynomial is:

Do = 1 $ Do*3 $ Do^7

where "Do" means the Data-output value
for the current bit time and DoAn means
the Data-output value "n" bit times ago.
The " W' operator is the modulo-two sum
(exclusive or) operator.

Every call of this routine generates
a new bit output and an associated clock
signal. Figure 2 shows hardware for the
PN detector and the timing circuitry.

Conclusion

It is apparent from the discussion
that any perturbation in the PN sequence
(i.e., wrong bit at the wrong time, data
stuck high or low, slow clock) will cause
the reset signal to be issued. However,
this "watchdog" can not protect against a
computer malfunctioning in a way that
causes the software-driven PN sequence to
continue being generated. Programmers
who might rely on a system such as this
to protect against software "getting
loose" should carefully consider where
and when the PN generator routine is
called.

Notes

[l] Typically, for PN detectors
implemented using shift-registers
and exclusive or gates, the detector
can be fooled into thinking that the
PN sequence received is correct if
that sequence is either an all ones
or all zeros pattern, depending on
the construction of the detector.
For this discussion, consider a
degenerate PN sequence to be one of
either all ones or all zeros.

4.87

PNBIT: ; generate another bit of
LD HL,PNREG :
LD A, UW ;
CP OFFH ;
JR NZ,PNBlO :
XOR A ;

PNBlO: AND 44H :
JP PO,PNB20 ;
CPF ;

PNB2Ot LD A, (HL) :
RLA :
LD NJ) ,A ;
AND 1 ;
OUT (PORT),A :
SET LA :
OUT (PORT),A ;
RET :

the PN sequence
pt to PN register
get contents
see if degenerate sequence
jump if not
zero contents if degenerate
check taps, clear CY
jump if next bit is to be zero
set CY to one
get old contents of register
shift in next bit
save new register contents
assume data is BO, clock is Bl
set up data, clock is low
get ready to clock it
same data, clock now high
that's all folks!

FIGURE 1: SUBROUTINE FOR GENERATING A PN SEQUENCE

FIGURE 2: HARDWARE IMPLEMENTATION OF PN DETECTOR AND TIMERS

4.88

