
Packet Radio - A Software Approach

Robert M. Richardson, FJ4UCI-I
22 North Lake Drive

Chautauqua Lake, KY. 14722

Abstract:

A software rather than hardware
approach to synchronous Packet Radio
communication at 1200 or 2400 Baud using
the Radio %ack TRS-80, Node1 I or MO&?1
III microcomputer is described. The
program duplicates virtually all the
functions provided by the Vancouver Area
Digital Communications Group (T7ADCG)
terminal node controller board which
requires an 8085 microprocessor, an 8273
synchronous data link controller (SDLC), an
8250 serial I/O, and a number of EPRO? and
RAP? memory chips, plus a separate
microcomputer with RS232C interface and a
1200/2200 Hz modem.

The only external equipment required
bY the software approach, other than a
TRS-80, amateur VHF transceiver and
antenna, is a port zero encoder/decoder,
and two EXAR chips for AFSK keying and
demodulation. The program has been
extensively tested on the 2 meter amateur
band working into southern Ontario and
locally in western New York.

Introduction:

Packet radio communications is coming
down the amateur radio pike in the near
future, and the near future is now upon us.
We have closely followed the evolution of
amateur packet radio with its asynchronous
beginnings in the Montreal area during
early 1979 and its synchronous beginnings
in the Vancouver area later in 1979/1980.
The synchronous packet radio pioneers,
including Douglas Lockhart VE7APU et al in
the Vancover area developed the rightly
famous and widely used VADCG terminal node
controller board which was the introduction
to synchronous amateur packet radio for the
majority of all amateurs actively
participating in packet communications
today.

Though a number of SDLC controllers in
addition to the Intel 8273 are now
available, such as those from Western
Digital and Zilog, and the price will
hopefully be coming down as volume
increases, there is yet another approach to
amateur packet radio which due to its low

cost and simplicity, may greatly broaden
amateur participation in this wave of the
future. This approach is the software
rather than firmware approach using a filodel

I or Model III TRS-80 with 48K memory and
hopefully for convenience, 1 or 2 mini-disk
drives. Suffice it to say, assembly
language is used which offers nearly 330
times faster execution speed than standard
Fortran, Pascal, or Basic high level
languages.

Even with the remarkable speed assembly
language offers the user, it does require a
finite amount of time in the receive mode
for the program to serially accomplish what
the dedicated SDLC chips are able to
accomplish in parallel: i.e., find the last
openning flag and address and store the
packet bits in memory, convert the serial
packet bits to decimal with zero deletion
(the opposite of zero insertion), and do
the CRC checking for each frame.
Nevertheless, this entire process for the
average packet only requires 90
milliseconds which is not a significant or
even noticeable time delay to the operator
at either end of the circuit.

General:- -

The program is comprised of 5
segments:

1. The transmit mode segment which
does the work horse job of converting
prepared messages or programs, either
keyboard or disk input, into IBM SDLC
format, and clocking them out bit by bit
serially at the desired Baud rate via port
zero. Racket and frame length IYBy be any
length desired from
address,

1 to 250 bytes plus
control and CRC bytes, and may be

input from the menu. See figure 1. A
total packet or frame length of 256 bytes
will be allowed when intra repeater routing
comes to pass. The extra two bytes will
serve to determine routing. The number of
preamble flags sent before the packet may
also be programmed which is a courtesv for
those with slow transmit and reGeive
switching at the receiving end, A number
of prepared messages may selected from the
menu as well as keyboard input to memory
for a nearly immediate packet. The video
display utilizes the split screen format
with the top 8 lines for receive? and the
bottom 8 lines for transmit. See figure 2.
Independent sequential scrolling is
provided for both transmit and receive
modes.

2. The cyclic redundancy check,

2.67

CRC16, segment which autonatically
generates the 2 byte CRC in IBY module 2
format and appends these 2 bytes to each
frame transmitted. This same subroutine
serves the receive mode to check each
incoming frame For CPC valicTity also usin
the IBM module 2 CRC algorithm. which the
dedicated SDLC chips utilize.

3. The receive mode sequent has a
software equivalent of a digital phase
locked loop which takes the serial packet
input via port zero, and stcres each bit in
memory either 8 bits per byte for best
memory utilization, or 1 bit per byte for
instructional purposes (easy to visualize).
After the complete packet hcls been
received, it is first converted from binary
to decimal, then stored in high memory and
displayed on video while the CRC test is
being made for each frame if a multi frame
packet was received. Depending upon
whether the packet is of the unnumbered,
supervisory, or information variety,
appropriate action is taken automatically.
The conventions followed are those used by
the VADCG so the program is fully
compatible with those amateurs using the
Vancouver terminal node controller. The
program will receive and decode packets of
any length up to the 12,288 byte capacity
of the bit store allocation. Average
packet decoding time after reception of the
packet trana,, _c'-&ssion is 90 milliseconds, as
previously mentioned.

4. The edit/modify segment is a
unique and extremely useful utility that
allows the operator instant access to any 1
of the 1024 byte, 60 pages of nemorv in the
TRS-88. Each page of memory is displayed
at one time on the video display in TRS-80
ASCII or graphics format. Either upper
case only, or upper and lower case
edit/modify may be selected from the TWIW.
Pressing the 'W for modify key intiates a
flashing cursor that may be moved up, down,
left, or right on the displalred page with
the arrow keys. Keyboard input ASCII value
may be input directly if desired
pressing the shift '@' keys displays tx,'
memory location in decimal, memory value at
this location, stack pointer value, and the
operator asked to input the new value. Upon
inputting the new value, the full memory
page is displayed again, Pages are moved
UP or down through memory by pressinq the
BREAK key (flashing cursor disappears) and
then the ENTER key to move up a page in
memory or the minus/DASH key to move down a
paqe in memory. Needless to say, though
ROX may be examined with this function,
only RAM may be modified. To elininate
tedious paging by hand, a number of control
keys allows instant access to the more
frequently used memory locations; i.e.,
transmit program store, received bit store,
and received message store.

5. Morse code I.D. and Morse
transmit segment. This minor subroutine
called by shift 'I' sends the Morse I.D. of

the transmitting station at any speed
desired to satisfy F.C.C. requirements.
Ccnversely, Morse code at any speed may be
tranmitted from the keyboard via shift
'X'.

Memory Management:

The operating program resides in
memory from 29696 through 40959. Three
12,288 byte segments are used exclusively
by:

A. 17408-29695 is reserved for the
program or data to be transmitted store.
Normally, a disk program to be transmitted
via packet is first loaded from disk to
40960+ in memoqr and then moved down to the
17408+ area by nressinq shift 'Y'. In the
'connected' mode of operation the program
or data fron 17403+ i s automatically
transmitted in single frame packets of 254
bytes length (a western New York convention
so that a single station may :JOT monopolize
the packet repeater unfairly). This
automatic transmission is called by
pressing 'B' from the menu.
Acknowledgement (ACK) packets are received
automatically and if valid the next packet
automatically transliiitted, otherwise the
previous packet is retransmitted.

B. 40960-53247 is reserved for
incoming received bit storage. we prefer
to store a bit per byte so that the user
may visualize the stored bit pattern,
though 8 bits per byte could be used for
better memory utilization. Unless directed
bY the menu command to SAVE bit storage,
this area is automatically cleared after
each packet is converted to decimal and
stored in high memory. Surely all you
amateurs operating VADCG terminal node
controllers know that it sends two SDLC
logical zero 'bytes' AFTER the opening
flags, which are then followed by a single
flag BEFORE the address byte. Or did you?
Packets less than 4 bIytes total length, are
ignored by the SDLC protocol that is used
in this program.

c. 53248-651535s is utilized for
storing the converted decimal byte values
from received pac:kets(. When it is full, an
automatic 'not ready to receive' (RJR) =
'wait' is transmitted and when
acknowledged, the operator may clear out
all address, control, and CRC bytes by
pressing '$' from the menu. Pressing shift
'B' then takes the operator to DOS ready
where the received program or data may be
DUMPed to disk, after which one retu.rns to

the program, sends al 'ready to receive'
(RR) to 'clear' the previous 'wait' and
continues upward and onward if it is indeed
a program or data longer than 12,288 bytes
bytes in length.

Conclusion:

Amateur radio has room for all types
and varieties of individuals with

2.68

dramatically differing interests. Some
prefer operating and could care less how an
electron gets from 'A' locqtion to 'B'
location and what is involved in getting it
there, There is certainly nothing wrong
with that, and to that variety of amateur
we highly recommend the Vancouver terminal
node controller kit *. With a few hours of
soldering you are @on the air' using their
EPROMs. To the variety of amateur who
truly wishes to thoroughly understand how
the absolutely brilliant IBM SDLC protocol
operates, how to modify it for the
forthcoming HDLC modes, we recommend the
software rather than hardware approach.
When you are done, you will not only be an
'instant SDLC expert,' but a better
assembly language programmer too.

The software approach to packet radio
communications is obviously limited by the
clock speed of the microcomputer being
used. The Model I and p/Iodel III TPS-80
will easily handle 1200 and 2400 Baud
packets, with 4800 Baud packets being
somewhat marginal but acceptable, TaJithout
modifying the standard crystal clock of
either microcomputer. By instaLling one of
the numerous clock speed up kits available
(4 MHZ), both 4800 and 9600 Baud packets
could be handled.

1?e are indebted to a number of our
Canadian neighbors in the Hamilton and
Toronto area for assistance in testing the
software approach to packet radio. Most
noteable have been VE3MWI, VE3DSP, VE3ICV,
and VE3DVV. Their packet repeater located
in the southern environs of Toronto with
the apt call sign of VE3RPT is now active
on 145.650 MHz.

Locally (6.5 miles northeast of our
QTH), the major effort to install a packet
repeater in the greater Bufffalo area has
been borne by W2EC'P with considerable
assistance from VE 3MVW. It will be linked
to both the Toronto repeater to the north
and a new packet repeater in the Syracuse
area that will be able to link into the
greater New York Citv area to the east, and
thence linked up andAdown the east coast.

We have only touched briefly on a few
of the highlights of the software approach
to packet radio communications. To go
through it in depth would take much more
than the allotted space and time. For
those who wish to explore the subject in
greater depth, at least a few hundred pages
worth, we suggest you watch for the new
book, 'The Packet Radio Handbook' that will
be published spring '83 by Richcraft
Engineering Ltd., #I Wahneda Industrial
Park, Chautauqua, N.Y. 14722 at $22
postpaid to the
postpaid overseas.

U.S. and Canada and $30

* Vancouver Area Digital Comm. Group
818 Rondeau Street
Coquitlam, British Columbia
Canada V3J 523

2.69

ENTER OPTION DESIRED ? -

CHANGE ADDRESSEE & NUMBER = A
NOT CONNECTED TOGGLE = C
SEND PACKETS FROM LO-ME!9 = E
USING ONLY SOFTWARE MSG = G
NOT INSERT DPLL BIT TOGGLE = I
NOki IN UFPER CASE MODIFY =K
DISPLAY/EDIT MEMORY PAGE = M
LOAD HI-MEM ALL 11111 =o
SEND CONTINUCUS FLAGS/126 = (z
MULTI-FRAME PACKET TEST = S
CLEAR NON-PGM MEM 17K-65M = u
ANY PACKETEERS ABOOT 255/O = X
NORM BIT STASH CLEAR = 1
SET NUMBER OPENING FLAGS =3

lU'2EUP CONNECT REQUEST CQ = B
132EUP DISCONNECT REQUEST = D
k72EUP CONNECT ACKNOWLEDGE L F
1713RKING ON AP?SAT AX, 25 PISG = H
SEND HI-MEM CONTINUOUSLY =J
FILL HI-MEM WITH UCUUU = L
SET DISCRETE PACKET LENGTH =N
CLAN-X DPLL TIb7ING VALUE: = P
ABORT LO-MCM XMIT SE,uIJENCE =R
QUICK BKOhN FOX TEST MSG = T
INPUT/TRANSMIT MESSAGE = V & id
WVE M1:D-r4dM TO LO-MEM = Y
MOVE RECV PACKS TO LO--ME>1 = 2
WAIT & CLEAR WAIT TOGGLE = 4

Figure 1

1200 BAUD SDLC RECEIVE MODE ----> r,JOIqi CONNECTED
-b--------------~--------------

--------o-I-----~--------------

1200 BAUD SDLC TRAi\lSMXT MODE CONNECTED TO VE3MhM
----------s----l~--------------

Figure 2

2.70

