
DESIGN DECISIONS FOR THE TAPR TNC LINK LEVEL

David Henderson, KD4NL
2621 W. 164th St.
Torrance, CA 90504

Abstract

The decisions that were made up front
on the software side of the TAPR project
have had a very strong impact on the
implementation and success of that project.
Following is a review of some the design
decisions that were made long before coding
started, and a chronicle their impact upon
implementation and performance.

Introduction

Before the software description
starts, lets run through a quick overview
of the hardware. The microprocessor is a
Motorola 6809; the memory complement is 24
kilobytes of EPROM, 6 kilobytes of RAM, and
32 bytes of electrically erasable ROM. The
peripheral chips consist of a Mostek 6551
asynchronous interface adapter, and a
Western Digital 1933 HDLC interface chip.
There is also an Mostek 6522 for clock
support and onboard parallel I/O. The
potential of using a parallel port for
term inal I/O is provided with a Motorola
6820 parallel port chip. The computer
system used as a software factory for the
onboard software was an HP-64000
microcomputer development system present at
the University of Arizona. This system
made possible the installation of the TNC
software on the TNC hardware.

The entire software development cycle
was focused on x.25. The AT&T BX.25
document was taken as a reference for LAPB
(reference l), and the AMSAT document
(reference 2) was taken as a reference for
the header construction. The transition
tables in the BX.25 document were followed
very closely for the connect/disconnect
sequences, but the I-frame manipulation was
implemented in other ways, as described in
more detail later on.

Architecture

The number one design choice was to
write as much of the TAPR code in Pascal as
possible. Pascal was chosen because it is
a widely available high level language, and
the existence of sophisticated compile time
options for debugging implied the Pascal
checkout could be started either on a big
timesharing system or a microcomputer
Pascal system.

The choice which influenced the rest
of the implementation the most was to have

the high level Pascal code sit in a tight
loop checking flags that are continually
being set and reset by interrupt code
written in assembly language. This design
decision paved the way for implementation
and checkout of the Pascal source without
having to have the hardware actually
running, and greatly simplified the design
of the Pascal code since it did not have to
deal with interrupts. There was also a
complicating factor in that flags are
continually being set and reset to schedule
future actions in the Pascal code; that is,
the main loop of code was a sequence of IF
and CASE statements that check these
important flags. The action taken by the
code is not immediately apparent upon
reading the code; you have to know the
meaning of the flags being manipulated,.

The next design hurdle was the
buffering; how many buffers should there be
and what mechanisms were to be used to move
data from one buffer to another? The main
task, being a TNC, needed only two buffers,
one for the incoming data flow and one for
the outgoing data flow, and it was thought
at one time that only two buffers would be
needed. Once digipeating and control
functions were considered, it was clear
that four buffers were needed - there had
to be a way to shuttle HDLC input data to
the HDLC output queue and a way of talking
terminal input dlata for commands, acting
upon the commands, then printing a response
to the terminal. The software was then
broken up into four distinct sections; each
section moves data from one buffer to
another, with thle possible side effects
such as parameter changes. One section
moved data from the HDLC input ring to the
terminal output ring, another moves data
from the terminal input ring to the HDLC
output ring, a third took data from the
terminal input ring and produced status
messages in the tlerminal output ring, and
the digipeating process move HDLC frames
from the HDLC input ring to the HDLC output
ring.

The next choice was to have the
software @know* as little as possible albout
the half duplex n(ature of the radio link.
Previous implementlations such as Vancouver
Area Digital Communications Group protocol
(VADCG for short) had used the poll/final
bit in messages to turn the link around and
have the receivi,ng side turn into the
transmitting side. I did not fully
comprehend the use of the poll/final bit in

2.21

this manner, and this use of the poll/final
bit certainly conflicted with the LAPB
usage. The design decision chosen for this
"when do I send" problem can be simply
stated: Only acknowledge receipt of
messages or send messages when the modem
signal data carrier detect is not present,
or the data carrier detect signal has
dropped at least once since receipt of a
m e s s a g e . This rule means that message
acknowledgements will be generated once for
every sequence of information frames, and
that there is a break in the received
traffic before any new messages are queued
up for transmission.

Consequences of the architecture

The Pascal implementation on the
HP-64000 development system was not a full
IS0 standard Pascal. The major difference
dealt with character strings; the HP Pascal
had a STRING data type whereas the IS0
standard has only arrays of characters.
Unfortunately when the HP system writers
adopted the STRING data type, they threw
out completely any compatibility with IS0
standard programs - character strings
longer than one byte could not be used.
This problem was ~solved' by including all
character strings into one area of memory
in EPROM. All references to constant
strings had to reference the name of the
array containing the data in this read only
data area.

The Pascal code was checked out on two
different computer systems prior to being
installed on the TAPR board. The systems
were a 36 bit mainframe and an 8 bit micro.
The 36 bit mainframe checkout used routines
to loop back HDLC input and output together
in software; this allowed the software to
connect to itself and allowed the basic
logic to be checked out; all of this
checkout was greatly speeded up via the
symbolic debugger on the mainframe, The 8
bit micro allowed on the air tests with
VADCG boards, and was invaluable in shaking
down more basic logic problems. Again the
routines to interface to terminal and HDLC
I/O had to be changed to reflect the
routines existing in the 8 bit micro
system, but this is a pretty easy task to
accomplish, The result of this staged
checkout was a very robust implementation
of x.25. . There were bugs in the Pascal
code, but they were only evident under
extreme conditions.

Implementation of the architecture

There are four streams of data flow:
Two directions for HDLC I/O and two
directions for terminal I/O. Knowing when
there is data present in the input streams
and when there is enough room in the
buffers for more characters in the output
streams is handled by global variables.
These variables are generally set by
interrupt routines and reset when low level
routines lcalPed by Pascal manipulate data
associated by the flags. Each data stream

has its own peculiarities, and the flag
checking/clearing activity associated with
each peculiarity will be covered.

The first stream of data is the HDLC
input stream. Here a global variable
exists which always contains the HDLC input
top frame size, and is zero if there are no
HDLC input frames placed into the HDLC
input buffer anld not yet processed by the
Pascal program. The portion of the Pascal
code that handles HDLC input notices that
the variable is nonzero, and calls a low
level routine which will move the HDLC data
from the input ring buffer into a private
Pascal buffer for further examination.

For HDLC output, there is a global
variable which contains the number of free
bytes in the HDLC output ring buffer, This
cell is checked before any HDLC output
frame is generated, and if there is not
enough room in the HDLC output ring buffer
for the potential output frame, then the
generation sf the output frame is deferred
by simply not clearing the flags that cause
the output frame to be generated. In the
case of digipeated frames, if there is not
enough room in the HDLC output ring buffer
for the digipeated framep then the
digipeated frame is simply forgotten.

Terminal output is similar to HDLC
output, but there are differences. There
is a global variable which contains the
number of bytes currently available in the
output ring buffer. The routine called to
queue up terminal data will alw;lys wait for
space available in the output ring 'buffer
to queue the character, The purpose in
having the variable output ring free byte
count is to avoid waiting for buffer space
when X-frames come in on the HDLC input
port. When an I-frame comes in that has a
data portion too big to buffer, the data in
the frame are ignored and the HDLC message
" RNR" is scheduled for future transmission.
This async output routine is freely
callable from anywhere within the Pascal
code, and does get called as a part of
parameter displays, hex dumps., and internal
debug routines, It was decided that when
any of these activities were going on, no
one would care if the .T?ascal code was
spinning while waiting for more room in the
async output buffer.

NOW we come to the most interesting of
the buffering problems, terminal input.
The nature of X-25 is that there can be up
tO seven complete I-frames in flight at
once. From the tight RAM limitations, it
was clear that the input data for these
I-frames could not be duplicated anyplace
else in memory. The solution chosen this
time around was to build a table describing
the active portion of the terminal input
ring buffer. The table is eight entries
low I and each entry consists of a data
start pointer into the terminal input ring
buffer, and a data length frcm that start
point. The table is eight entries long
because that is the modulus for the X.25

2.22

sequence numbers I and these X, 25 sequence
numbers serve as’ indexes into the table.
Part of the routine activity is to check to
see if a new I-frame can be generated, and
if SO then a check is made for data to fill
the I-frame. This checking is performed by
calling a routine which returns a removal
pointer and a size for data (if any)
present within the terminal input ring. If
there are data present, then the size will
be nonzero, and another table entry can be
constructed to describe an P-frame in
flight. When I-frames get acknowledged the
data space occupied in the terminal input
ring buffer is marked no longer in use by
advancing to the next sequence number and
bY changing a pointer I allowing reuse of
the memory. One consequence of this design
choice on input buffering is a "selective
re j ect” (asking for fills) p becomes a more
difficult job to implement than if the
other feasible approach of using linked
lists had been made (It should be noted
that selective reject is not part of X.25)1

The next area that was simplified by
the design decisions is the generation of
HDLC frames for information transfer.
There is a definite priority in X.2Ep for
the kinds of frames that have to be sent,
The priority scheme is implemented by the
order in which flags are checked. These
flags are generally set in the HDLC input
routine, but may be set by anyone to
schedule HDLC output. The flags that are
checked and the order in which they are
checked are: The send RNR flag (set when
terminal buffer space gets low) to send a
RNR frame, the send REJ flag (set when an
out of order frame is received) to send a
REJ frame, the received RNR flag must be
reset (set when an RNR frame is received)
to send an I-frame, the send RR flag (set
when I-frame received) to send an RR frame.
This section of code is also where the
ha1 f-duplex decision must be made. The
code to generate these output frames is
only executed if the modem signal DCD (data
carrier detect) is low or if the DCD signal
dropped after an;y of the flags scheduling
RNR, REJ or RR frames were set. This
simple test is all it takes to prevent the
sending of an RR frame for every I-frame
received. Notice also that with the order
in which the flags are checked, sending an
I-frame will be attempted before sending an
RR frame, so that if both sides have
I-frames to send, then there are no RR
messages sent when an I-frame would also
acknowledge receipt to the other side.

Another detail that was made quite
easy by the " no interrupts in Pascal"
decision was the handling of multiple
software timers. Actually, there are only
two timers, the beacon timer and X.25 timer
t 1. p but they are handled exactly the same
way. The generalized timer code is
implemented via a Pascal structure; this
structure contains an expiration time and a
Boolean flag that indicates whether or not
the timer is running. " Time"' i s used
loosely, for the only way the Pascal code

is aware of the passage of time is by
looking at Yet another global variable.
T’3e time global variable is incremented at
a one per second rate by an assembly
l13nguage interrupt routine. Whenever a
timer needs to be started, its expiration
time is set to the time global variable
plus the number of seconds in the timer
interval, and a Boolean flag is set within
the timer structure to indicate the clock
i 1s active, The big loop of code that is
continually checking flags now has to check
the timers for expiration, and this is
qu i tie easily done by comparing the global
v3r i(able time with the expiration time in
the timer a

Debugging and checkout

A subset of IS0 standard Pascal was
selected which would work both with the
HIP-64000 compiler and the two systems that
I had available for writing and checkout,
The real reason for this subset decision
was to allow as much checkout of the
software as possible in a friendly
environment. The '0 no interrupt code in
Pa sea 1 “ decision made possible the
replacement of low level routines in
assembly language with routines written in
PZl SCi31 which could invoke standard Pascal
1,‘O. On the mainframe, a dummy set: of HDLC
input and output routines was; written to
loop back the HDLC output internally (from
the Pascal programs point of view) to the
HDLC input. On the 8 bit micro system,
existing routines for MDLC input and output
were modified to use new calling sequences
and the Pascal code was actually executed
OrI the air. In both debugging testbeds,
the clock was simulated by incrementing the
g I. oba 1 variable holding the second tick
whenever the code in the main loop noticed
the system time of day change from a
previous value. These sets lof routines
allowed checkout of the major logic flow of
the Pascal software under $a symbolic
debugger, This self-test arrangement was
extremely valuable, and allowed about
ni.nety percent of the bugs in the Pascal
code to be eliminated under the friendly
environment of the symbolic debugger. Not
everything could be checked, and the things
that could not be checked were not: setting
flags for the 1 ow level routines (which
djdnY exist) or missing transitions in the
state/event table that were never exercised
during this self-test. One clear fallout
0 f" the debugging procedure was
txanspsrtability, because the software was
running on two dlifferent Pascal systems
before the TAPR TNC software even met the
TAPR TNC hardware.

Scmmary- -

The broad design decisions that 'were
made before implementation of the TAPR TNC
software served as an a id in
inplementation, supplying a framework that
weuld support the detailed coding process.
These decisions were made in the light of
previous experience (and mista:kes) in the

2.23

implementation of three other systems
similar to X.25. There were other choices 2. RX.25 Technical Reference@ Issue 2,
that could have been made to supply the June 1980. American Telephone and
implementation framework, but my intent was Telegraph Company.
to illustrate the decisions which made the
TAPR TNC software almost write itself. 2. Protocol Specification for Level 2(link

level) Version 1.1, Paul Rinaldo, W4R1, et
References al, October 10, 1982.

2.24

